Производственные излучения. Виды излучений, способы и средства защиты Методы и средства защиты от производственного излучения

Нормативные документы по охране труда в РБ. Системы стандартов безопасности. 4

Система надзора и контроля за выполнением законов, правил и постановлений по вопросам ОТ в РБ. 5

Ответственность должностных лиц за несчастные случаи. Нарушение правил охраны труда. 6

Уголовная ответственность. 6

Классификация несчастных случаев (НС). 7

Расследование несчастных случаев. 8

Специальное расследование несчастных случаев на производстве. 9

Методы анализа производственного травматизма. 10

Производственная санитария. 11

Микроклимат производственных помещений. 11

Производственное освещение. 12

Количественные и качественны показатели освещения. 12

Производственный шум. 15

Инфразвук 17

Ультразвук 18

Вибрация 20

Нормирование вибрации. 22

Ионизирующее излучение. 23

Виды ионизирующих излучений, их физическая природа и особенности распространения. 23

Дозы ионизирующих излучений и единицы их измерения. 23

Нормирование ионизирующих излучений. 24

Защита от ионизирующих излучений. 26

Электромагнитное излучение. 26

Электрические поля промышленной частоты (50 Гц). 26

Защита от электрических полей. 27

Электромагнитные излучения радиочастотного диапазона. 27

Нормирование сотовой связи. 29

Нормирование магнитного поля 30

Постоянное магнитное поле. Предельно допустимый уровень на рабочих местах. 30

Классификация лазеров по степени опасности лазерного излучения. 31

Опасные и вредные производственные факторы, сопутствующие эксплуатации лазеров. 31

Биологическое воздействие лазерного излучения. 32

Нормирование лазерного излучения. 34

Дозиметрический контроль лазерного излучения. 35

Защита от лазерного излучения. 35

Ультрафиолетовое излучение. 36

Аттестация рабочих мест, установление льгот работающим во вредных условиях труда. 38

Гигиеническая классификация условий труда. 38

Опасные и вредные производственные факторы, возникающие при работе с ПВМ. 43

Электробезопасность 44

Условия поражения электрическим током. Факторы, влияющие на исход поражения при электротравме. 45

Классификация помещений по степени опасности поражения электрическим током. 45

Защитное заземление (см. лабораторную работу №1) 46

Зануление. 46

Защитное отключение. 47

Электрозащитные средства, применяемые в электроустановках. 48

Организационно-технические мероприятия, обеспечивающие электробезопасность работ. 48

Наряд-допуск для производства работ в электроустановке. 49

Опасные зоны оборудования. Классификация средств защиты. 49

Статическое электричество. 50

Пожарная безопасность. 51

Виды горения. 51

Классификация веществ по пожарной опасности. 52

Классификация строительных материалов и конструкций по возгораемости. 52

Огнестойкость зданий и сооружений. 53

Противопожарные преграды 55

Особенности тушения пожара в электроустановках, находящихся под напряжением. 57

Виды инструктажей и обучение правилам охраны труда. 57

Охрана труда – система законодательных актов, социально-экономических, организационных, технических гигиенических и лечебно-профилактических мероприятий и средств, обеспечивающих безопасность сохранения здоровья и работоспособности человека в процессе труда.

Предмет охраны труда состоит из четырех основных разделов:

    Законодательство по охране труда – это часть трудового законодательства;

    Производственная санитария;

    Техника безопасности;

    Пожарная и взрывная безопасность.

Существуют опасные и вредные производственные факторы:

Опасный фактор (производственный) – такой фактор, воздействие которого на работающего производит к резкому изменению состояния здоровья.

Вредный производственный фактор – такой фактор, систематическое воздействие которого работающего приводит к профессиональному заболеванию.

Производственная санитария занимается вопросами вредных производственных факторов (шумы, температура, вибрация, излучение и т.д.).

Техника безопасности – этот раздел занимается вопросами опасных производственных факторов (большой под раздел - электробелопасность).

ИЗЛУЧЕНИЯ В ПРОИЗВОДСТВЕ И ЗАЩИТА ОТ НИХ

1. Источники излучения и классификация средств защиты

Источники излучений. В современном производстве распространены различные виды излучений: ультрафиолетовое, электромагнитное, инфракрасное и радиоактивное.

В практике животноводства и птицеводства широко применяют облучение животных в период стойлового содержания ультрафиолетовыми, а молодняка (ягнят, цыплят, телят, поросят) инфракрасными лучами. Используются излучения для пастеризации молока, для ускорения развития растений, для уменьшения восприимчивости к болезням и в других случаях.

Под влиянием умеренного ультрафиолетового облучения повышается естественная резистентность организма и продуктивность животных. Инфракрасные лучи в отличие от ультрафиолетовых не обладают заметным химическим действием; они поглощаются тканями, вследствие чего оказывают в основном тепловые воздействия. На этом основано применение инфракрасных лучей для обогрева молодняка в зимнее время. Поглощение инфракрасных лучей кожным покровом -- сложный биологический процесс, в котором участвует весь организм с его терморегуляторным аппаратом. Действие инфракрасных лучей вызывает переполнение кровеносных сосудов кровью (в результате нагрева кожи), что усиливает обмен веществ.

Инфракрасное излучение имеет место в горячих цехах, источниками ультрафиолетовых излучений является дуга электросварки, ртутно-кварцевые лампы и другие ультрафиолетовые и облучающие установки, солнце, лазеры.

Источники электромагнитных излучений -- линии электропередач, различные высокочастотные генераторы, радиоволны.

Для облучения семян, растений, пищевых продуктов, для оценки эффективности удобрений, роли микроэлементов, плодородия почвы, качества ремонта и износостойкости деталей, для исследования механизма воздействия регуляторов роста и обмена веществ у животных используют искусственные радиоактивные вещества.

При обработке материалов (пайка, резка, точечная сварка, сверление отверстий в сверхтвердых материалах, дефектоскопия и др.) применяют лазеры, являющиеся источниками лазерных излучений.

Все перечисленные излучения при превышении определенных значений вредны, поэтому необходимо предусматривать соответствующие меры безопасности.

Классификация средств защиты. По характеру применения различают средства коллективной и индивидуальной защиты работающих (ГОСТ 12.4.011--87).

Средства коллективной защиты в зависимости от назначения подразделяют на классы (для защиты от излучений): средства защиты от ионизирующих, инфракрасных, ультрафиолетовых, электромагнитных излучений и излучений оптических, квантовых генераторов, от магнитных и электромагнитных полей.

Из средств индивидуальной защиты представляют интерес изолирующие костюмы, средства защиты органов дыхания (типа масок), глаз, лица, рук, головы, специальная обувь и одежда.

2. Ультрафиолетовое излучение

Общие сведения. Электромагнитное излучение в оптической области, примыкающее со стороны коротких волн к видимому свету и имеющее длины волн в диапазоне 200...400 нм, называют ультрафиолетовым излучением (УФИ). Влияние его на человека оценивают эритемным действием (покраснение кожи, приводящее через 48 ч к ее пигментации -- загару). Мощность УФИ для биологических целей характеризуется эритемным потоком, единицей измерения которого является эр (эритемный поток, соответствующий излучению с длиной волны 297 нм и мощностью 1 Вт). Эритемную освещенность (облученность) выражают в эр/м2, а эритемную дозу (экспозицию) -- в эр-ч/м2.

При длительном отсутствии УФИ в организме развиваются неблагоприятные явления, называемые «световым голоданием». Поэтому УФИ необходимо для нормальной жизнедеятельности человека. Однако при длительном воздействии больших доз УФИ могут наступить серьезные поражения глаз и кожи. В частности, это может привести к развитию рака кожи, кератитов (воспалений роговицы) и помутнению хрусталика глаз (фотокератита, который характеризуется скрытым периодом от 0,5 до 24 ч).

Для профилактики неблагоприятных последствий, вызванных дефицитом УФИ, используют солнечное излучение, устраивая солярии, инсоляцию помещений, а также применяя искусственные источники УФИ (в соответствии с Рекомендациями по профилактике ультрафиолетовой недостаточности). Рекомендуются дозы УФИ в пределах 0,125...0,75 эритемной дозы (10...60 мэр-ч/м2). В соответствии с Указаниями по проектированию и эксплуатации установок искусственного ультрафиолетового облучения на промышленных предприятиях максимальная облученность ограничивается 7,5 мэр-ч/м2, а максимальная суточная доза -- 60 мэр-ч/м2 для УФИ с длиной волны больше 280 нм.

Меры защиты . К средствам коллективной защиты от УФИ относятся различные устройства (оградительные, вентиляционные, автоматического контроля и сигнализации, дистанционного управления), а также знаки безопасности.

Защиту от УФИ осуществляют различными экранами: физическими (в виде различных предметов, поглощающих, рассеивающих или отражающих лучи) и химическими (химические вещества и покровные кремы, содержащие ингредиенты, поглощающие УФИ). Для защиты используют изготовленную из тканей (поплина и др.) специальную одежду, а также очки с защитными стеклами. Полную защиту от УФИ всех волн обеспечивает флинтглас (стекло, содержащее окись свинца) толщиной 2 мм. При устройстве помещений учитывают, что отражающая способность различных отделочных материалов для УФИ и видимого света различна. Краски на масляной основе, оксиды титана и цинка плохо отражают УФИ, а меловая побелка, полированный алюминий -- хорошо.

3. Инфракрасное излучение

По физической природе инфракрасное излучение (ИФИ) представляет собой поток частичек материи, которые имеют волновые и квантовые свойства. ИФИ охватывает участок спектра с длиной волны от 760 нм до 540 мкм. Относительно человека источником излучения является всякое тело с температурой свыше 36-37°С, и чем больше разность, тем большая интенсивность облучения.

Влияние инфракрасного излучения на организм проявляется в основном тепловым действием. Эффект действия инфракрасных излучений зависит от длины волны, которая обуславливает глубину их проникновения. В связи с этим инфракрасное излучение делится на три группы (согласно классификации Международной комиссии по освещению): А, В и С.

Допустимая продолжительность действия на человека тепловой радиации

Группа А - излучение с длиной волны от 0,76 до 1,4 мкм, В - от 1,4 до 3,0 мкм и С - свыше 3,0 мкм. Инфракрасное излучение группы А больше проникает через кожу и обозначается как коротковолновое инфракрасное излучение, а группы В и С - как длинноволновые. Длинноволновое инфракрасное излучение больше поглощается в эпидермисе, а видимые и более близкие инфракрасные излучения в основном поглощаются кровью в пластах дермы и подкожной жировой клетчатки.

Пропуск, поглощение и рассеяние лучистой энергии зависят как от длины волны, так и от тканей организма. Влияние инфракрасных излучений при поглощении их в разных пластах кожи приводит к нагреванию ее, что обуславливает переполнение кровеносных сосудов кровью и усиление обмена веществ.

Длинноволновые инфракрасные излучения поглощаются слезой и поверхностью роговицы и вызывают тепловое действие. Таким образом, инфракрасные излучения, действуя на глаз, могут вызвать ряд патологических изменений.

К наиболее тяжелым повреждениям приводит коротковолновое инфракрасное излучение. При интенсивном действии этих излучений на незащищенную голову может произойти так называемый солнечный удар.

Тепловой эффект действия излучения зависит от многих факторов: спектру, продолжительности и прерывистости излучения, интенсивности потока, угла падения лучей, величины поверхности, которая излучает, размеров участка организма, одежды и др.

Интенсивность инфракрасного излучения необходимо измерять на рабочих местах или в рабочей зоне близ источника излучения (табл.).

На непостоянных рабочих местах при стабильных источниках целесообразно замерять интенсивность излучения на разных расстояниях от источника излучения с одинаковыми интервалами и определять продолжительность облучения рабочих. Поскольку инфракрасное излучение нагревает окружающие поверхности, создавая вторичные источники, которые выделяют тепло, то необходимо измерять интенсивность излучение не только на постоянных рабочих местах или в рабочей зоне, но и в нейтральных точках и других местах помещения. Суммарная допустимая интенсивность излучение не должна превышать 350 Вт/м2.

Интенсивность суммарного теплового излучения измеряется актинометрами, а спектральная интенсивность излучения - инфракрасными спектрометрами ИКС-10; ИКС-12; ПКС-14.

Для измерения малых величин (1400--2100 Вт/м2) интенсивности излучения (от слабо нагретых тел или от сильных источников, размещенных далеко от рабочей зоны) применяют серебряно-висмутовый термостолбик Молля.

Для измерения ИФИ используют неселективные приемники излучения: пиранометр Янишевского, болометры и термоэлементы с оптическим фильтром КС-19, а также приборы, предназначенные для измерения ИФИ.

Оборудование ТФА-2 предназначенное для автоматической регистрации инфракрасного облучения и количества инфракрасного облучения в диапазоне длины волн от 700 до 3000 нм. Граница регистрации количества излучения 500 Вт*мин/м2. Приведенная погрешность регистрации ±5 %. Питание от сети.

Фотощуп ИВФ-1 предназначенный для измерения облучения в видимой (360-760 нм) и инфракрасной (760-2500 нм) участках спектру.

Граница измерения 100 Вт/м2 с двумя потдиапазонами. С помощью нейтрального фильтра граница измерений может быть повышена в 5 раз. Приведенная погрешность измерений ±5 %. Питание от сети.

Прибор для измерения ИФИ, созданного искусственными источниками излучения, предназначенный для работы в условиях сельскохозяйственного производства. Спектральная чувствительность прибора в пределах от 620 до 10* нм. Приемником излучения является термобатарея РК-15, граница измерений прибора 1000 Вт/м2 с тремя поддиапазонами. Приведенная погрешность измерения ±10 %. Питание автономное.

4 . Ионизи рующее излучение

Биологическое воздействие ионизирующего излучения проявляется в виде первичных физико-химических процессов, возникающих в молекулах живых клеток и окружающего их субстрата, и в виде нарушения функций целого организма как следствия первичных процессов.

В результате облучения в живой ткани, как и в любой среде, поглощается энергия, возникают возбуждение, ионизация атомов облучаемого вещества. Поскольку у человека и млекопитающих основную часть массы тела составляет вода (75%), первичные процессы во многом определяются поглощением излучения водой клеток, ионизацией молекул воды с образованием высокоактивных в химическом отношении свободных радикалов типа ОН или Н и последующими цепными каталитическими реакциями (в основном окислением этими радикалами молекул белка). Это и есть косвенное (непрямое) действие излучения через продукты радиолиза воды.

Прямое воздействие ионизирующего излучения может вызвать расщепление молекул белка, разрыв наименее прочных связей, отрыв радикалов и другие процессы.

Прямая ионизация и непосредственная передача энергии тканям тела не объясняют повреждающего действия излучения. Так, при абсолютно смертельной дозе, равной 6 Гр на все тело, в 1 см 3 ткани образуются 10 15 ионов, что составляет одну ионизационную молекулу воды из 10 млн. молекул. В дальнейшем под действием первичных процессов в клетках возникают функциональные изменения, подчиняющиеся уже биологическим законам жизни клеток. Наиболее важные изменения в клетках: повреждение механизма митоза (деления) и хромосомного аппарата облученной клетки; блокирование процессов обновления и дифференцировки клеток; блокирование процессов пролиферации и последующей физиологической регенерации тканей.

Особо радиочувствительными являются клетки постоянно обновляющихся (дифференцирующихся) тканей и органов (костный мозг, половые железы, селезенка и т.д.) Изменение на клеточном уровне, гибель клеток приводят к нарушениям функций отдельных органов и межорганных, взаимосвязанных процессов в организме, а это вызывает разного рода последствия для организма или его гибель.

Медицинская практика показывает, что облучение организма человека в целом и отдельных органов приводит к разной степени поражения. Поэтому для обеспечения безопасности людей вводится понятие критический о р ган - часть тела, ткань, орган, при облучении которого причиняется наибольший ущерб человеку.

В порядке уменьшения радиочувствительности органы относят к I, II или III группам:

I - все тело, красный костный мозг, гонады;

II - мышцы, щитовидная железа, жировая ткань, печень, почки, селезенка;

III - кожный покров, костная ткань, кисти, предплечья, голени, стопы.

Все последствия, которые обусловливаются облучением организма, классифицируются по следующим группам:

* - соматические эффекты - степень поражения и тяжесть растет по мере увеличения дозы облучения;

* - стохастические эффекты - эффекты вероятности возникновения опухолей органов, тканей, злокачественных изменений кроветворных клеток (порог по этим эффектам отсутствует);

* - генетические эффекты - врожденные уродства в результате мутаций и других нарушений, связанных с наследственностью (порога облучения не имеют и возможны при воздействии малых доз).

Для возникновения соматических эффектов существует дозовый порог.

Рис. 1. Радиоактивное загрязнение окружающей среды

При облучении человека незначительными дозами радиации изменений в здоровье не наблюдается. Так на Земле естественный радиационный фон на уровне моря составляет 0,5 мГр/год. На высоте 1 500 м он уже в 2 раза выше, на высоте 6 000 м (полет самолета) в 5 раз выше.

При однократном облучении всего тела человека возможны следующие биологические нарушения в зависимости от суммарной поглощенной дозы излучения:

до 0,25 Гр (25 Бэр) - видимых нарушений нет;

0,25 - 0,50 Гр (25-50 Бэр) - возможны изменения в крови;

0,50-1,00 Гр (50-100 Бэр) -изменения в крови, нарушается нормальное состояние, трудоспособность;

1,00-2,00 Гр (100-200 Бэр ) -легкая форма лучевой болезни, скрытый период до 1 месяца, слабость, головная боль, тошнота, восстановление крови через 4 месяца;

2,00-3,00 Гр (200-300 Бэр) -средняя форма лучевой болезни, через 2-3 часа признаки легкой формы лучевой болезни, расстройство желудка, депрессия, нарушения сна, повышение температуры, кровотечение из десен, колики, кровоизлияние, восстановление через 6 месяцев. Возможен смертельный случай;

3,00-5,00 (300-500 Бэр) - тяжелая форма лучевой болезни, через час неукротимая рвота, все признаки лучевой болезни проявляются резко: озноб, отказ от пищи. Смерть в течение месяца составляет 50-60% от облученных.

более 5,00 Гр (более 500 Бэр) - крайне тяжелая форма лучевой болезни, через 15 мин. неукротимая рвота с кровью, потеря сознания, понос, непроходимость кишечника. Смерть наступает в течении 10 суток (100 % от общего числа пострадавших).

При облучении в 100-1000 раз превышающую смертельную, человек погибнет во время облучения: «смерть под лучом».

Средствами коллективной защиты от ионизирующих излучений являются различные устройства (герметизирующие, вентиляции и очистки воздуха, транспортирования и хранения изотопов, автоматического контроля и сигнализации, дистанционного управления), а также знаки безопасности, емкости для радиоактивных изотопов и др.

При работах с рассматриваемыми веществами соблюдают правила личной гигиены, используют средства индивидуальной защиты, организуют дозиметрический контроль. На работах класса I и отдельных работах класса II средства индивидуальной защиты включают комбинезон или костюм, спецбелье, носки, спецобувь, перчатки, бумажные полотенца и носовые платки разового пользования, средства защиты органов дыхания. На работах класса II и отдельных работах класса III работающих обеспечивают халатами, легкой обувью, перчатками, шапочками и при необходимости средствами защиты органов дыхания. Лиц, проводящих уборку помещений и работающих с радиоактивными растворами и порошками, кроме основной спецодежды и спецобуви, дополнительно снабжают нарукавниками или полухалатами из поливинилхлорида (полиэтилена), фартуками, резиновой или пластиковой обувью или резиновыми сапогами. В необходимых случаях используют изолирующие шланговые костюмы (пневмокостюмы), очки, щитки, ручные захваты Правилами ОСП-72/80 определен строгий порядок радиационного контроля, в том числе и индивидуального (обязателен для тех, у кого по условиям труда доза облучения может превышать 0,3 годовой ПДД).

Одним из источников загрязнения радиоактивными веществами могут стать продукты питания, в результате выбросов радиационных веществ в окружающую среду, ядерных взрывов, аварий на АЭС и др. Например, на Чернобыльской АЭС взрыв был не ядерным, а механическим (тепловым) и радионуклиды оказались в верхнем (сантиметровом) слое земли и легко переносились ветром, пыльными бурями, дождем. Поэтому сегодня поверхностный слой земли является основным источником радиоактивной опасности. Академик А.Сахаров утверждал, что суммарное долговременное воздействие от разрушенного реактора соответствует взрыву десятимегатонной водородной бомбы, т.е.- 500 двадцатикилотонных атомных бомб. Пределом годового поступления в организм человека, по стронцию - 90, через органы дыхания (рис.5.3.) является величина 0,29 мкКи/год, через органы пищеварения - 0,32 мкКи/год. Допустимая концентрация стронция-90 в атмосферном воздухе - 4 10-14 Ки/л, в воде - 4-10 -10Ки/л. Если радиоактивное загрязнение продуктов составляет 1?10-7 Ки/л (Ки/кг), то их применять в пищу категорически запрещается. Радионуклиды, обладая биологической подвижностью, переходят из почвы в растения, а потом в организм человека. Размеры перехода радионуклидов из почвы в растения оцениваются величиной коэффициента накопления Кн:

Данный коэффициент можно использовать на загрязненных территориях для оценки содержания радионуклидов в будущем урожае и принимать меры безопасности при обеспечении населения необходимыми продуктами питания.

Как показывают исследования, между концентрациями радионуклидов в почве и их содержанием в растениях, наблюдается прямо пропорциональная зависимость. Правда, биологическая подвижность радионуклидов разная. Например, радиоактивные изотопы стронция и цезия имеют высокую биологическую подвижность и через год-два после загрязнения территории поступают из почвы в растения.

Больше всего стронция-90 содержит зерно, клубни, корнеплоды (столовая свекла, морковь), бобовые культуры (горох, соя).

Среднеживущие радионуклиды (цезий-144, рутений-106, прометий-147) при переходе из почвы в злаковые растения концентрируются (99%) в корневой системе и практически не накапливаются в корнеплодных растениях.

Токсичный плутоний, практически, в растения не поступает, но его пылинки (мелкие частицы) могут быть зафиксированы на грибах.

Меньше всего радионуклиды накапливаются в плодах фруктовых деревьев, ягодах кустарников (малина, смородина, крыжовник).

Поэтому, с точки зрения безопасности жизнедеятельности человека, необходимо знать не только источники радиации, их нормы, но и биологическую подвижность и условия накопления. Для снижения поступления радионуклидов с продуктами питания, водой, должен проводится постоянный дозиметрический контроль.

Лимиты доз и допустимые уровни . Численные значения лимитов доз устанавливаются на уровнях, исключающих возможность возникновения детерминированных эффектов облучения и, одновременно, гарантируют настолько низкую вероятность возникновения стохастических эффектов облучения, что является приемлемым для лиц и общества в целом.

Для лиц категорий А и Б лимиты доз устанавливаются в пределах индивидуальной годовой эффективной и эквивалентной доз внешнего облучения (лимиты годовой эффективной и эквивалентной доз). Ограничение облучения населения категории В осуществляется введением годовой эффективной и эквивалентной доз для критических групп лиц категории В. Последнее означает, что значение годовой дозы облучения лиц, которые относятся к критической группе не должно превышать лимита дозы, установленной для категории в.

С лимитом дозы сравнивается сумма эффективных доз облучения от всех промышленных источников излучения. В эту сумму не включают:

* дозу, которую получают при медицинском обследовании или лечении;

* дозу облучения от природных источников излучения;

* дозу, связанную с аварийным облучением населения;

* дозу облучения от техногенно-усиленных источников природного происхождения.

Дополнительно к лимиту годовой эффективной дозы устанавливаются лимиты годовой эквивалентной дозы внешнего облучения отдельных органов и тканей: хрусталика глаза, кожи, кистей и стоп (табл.2.6.2.).

Таблица 1.

Лимиты дозы облучения

Примечания:

а) - распределение дозы облучения в течение календарного года не регламентируется;

б) - для женщин детородного возраста (до 45 лет) и беременных действуют ограничения;

в) - в среднем за любые последующие 5 лет, но не более 50 мЗв за отдельный год (ЛДmax).

Согласно «Основным санитарным правилам работы с радиоактивными веществами и другими источниками ионизирующих излучений» ОСП 72/87, существует четыре вида контроля при ведении любых радиационно-опасных работ.

Это дозиметрический, радиометрический, индивидуальный доз и метрический контроль и спектрометрические измерения.

1. Дозиметрические приборы предназначены для измерения мощности дозы (уровня радиации), позволяют установить участки или зоны повышенного излучения (по сравнению с установленным порогом радиации).

2. Радиометрические приборы служат для определения радиоактивного загрязнения поверхности различных предметов, оборудования, транспортных средств, одежды, тары, продуктов, сырья, почвы и т.д.

3. Приборы индивидуального контроля позволяют измерить полученную человеком дозу в конкретной ситуации или за определенный период работы и времени.

4. Спектрометрические установки позволяют установить спектр содержания радионуклидов, изотопов на загрязненном объекте.

В последнее время все приборы стали делить на профессиональные и бытовые.

Измерение гамма-фона представляет непростую задачу, поскольку наиболее распространеннее типы приборов (СРП-2, СРП-68) вносят в измерения значительные погрешности за счет энергетической зависимости дозовой чувствительности (так называемый «ход жестокости»). Эта погрешность определяется энергетическим эквивалентом порога дискриминации импульсов и меняется от прибора к прибору.

Приборы с газоразрядными счетчиками (типа ДРГ) не вносят значительных погрешностей, однако таких приборов в настоящее время выпускается мало.

Термолюминесцентная дозиметрия (ТЛД) обладает высокой чувствительностью, приборы практически не имеют «хода жестокости».

Пассивные накопители радона просты в конструкции и эксплуатации, применяются во многих странах, но пока отечественной промышленностью не выпускаются.

К бытовым приборам относятся те, которые готовятся для населения. Правильная оценка радиоактивного загрязнения зависит от методики отбора и представительности проб, замера, оценки и обработки результатов измерений.

В методике определения радиоактивности пищевых продуктов воды и окружающей среды условно можно выделить четыре основных момента:

1. Отбор и подготовка проб для измерений;

2. Подготовка приборов, прошедших метрологическую проверку, к проведению измерений;

3. Измерения фона и измерения радиоактивности у проб, других объектов и окружающей среды;

4. Обработка результатов и расчет радиоактивности (удельной массовой или объемной активности) проб и сопоставление их величин с предельно допустимой нормой.

В каждом конкретном случае могут быть какие-то свои особенности, но существуют и общие закономерности, которые необходимо коротко изложить.

1. При отборе проб масса общей пробы должна быть не менее 0,5 - 1кг естественной влажности. Масса общей пробы для шерсти, пушного сырья, шкур, соков, сиропов, компотов - 100 - 200 г, для мясных, колбасных изделий и других - 200 - 300 г.

Общая проба составляется из 8 - 10 точечных проб, которые отбираются через равные интервалы по схеме «сетки», «диагонали» с участка поля, бурта, насыпи, кучи, партии товара и т.д.

С отобранной пробы, если это необходимо, удаляются загрязнения почвы путем тщательной промывки в дистиллированной воде. Кроме того, проводят очистку и измельчение массы пробы. Например, мясо и рыбу моют и удаляют чешую и внутренности, с колбасы - оболочку, с сыра - слой парафина.

2. Для измерения необходимо применять только те приборы, которые прошли метрологическую проверку.

3. Все работы по проведению замеров радиоактивности проб необходимо проводить в соответствии с паспортом и инструкцией данного типа приборов. Замеры радиации (фона) производят на расстоянии одного метра от пола (уровня земли).

При возникновении аварий, связанных с радиационной опасностью разворачивают свою работу специальные подразделения и формирования ГО.

Организация дозиметрического контроля. Дозиметрический контроль проводится под руководством начальников всех степеней и командиров формирований ГО.

Дозиметрический контроль включает:

* контроль облучения;

* контроль радиоактивного загрязнения.

Контроль облучения проводится с целью получения данных о поглощенных дозах радиации для первичной диагностики. Для измерения дозы облучения применяются дозиметры. Контроль облучения людей делится на две группы - групповой и индивидуальный.

При групповом контроле один дозиметр выдается на группу людей (бригаду, звено и т.п.), или проводится расчетным методом с помощью формулы:

где:Д - поглощенная доза;

Рср - средний уровень радиации (определяется при помощи прибора);

Косл - коэффициент ослабления защитного сооружения.

При индивидуальном контроле дозиметр выдается каждому работнику. Этот метод применяется для тех категорий, к которым нельзя применять групповой метод.

Для учета поглощенных доз облучения ведутся следующие документы дозиметрического контроля:

* сведения выдачи измерителей дозы и учета показателей;

* журнал контроля облучения;

* карточка учета доз облучения;

* журнал отбора и сдачи проб (только в службах и штабах ГО);

* донесение о трудоспособности и заражении людей, техники и другое.

Контроль облучения нужен для того, чтобы поглощенные дозы радиации не превышали допустимых норм облучения.

Допустимые дозы облучения:

* в соответствии с нормами для населения поглощенная доза в нормальных условиях не должна превышать - 0,5 бэр за год (категория Б)

* для персонала в нормальных условиях на 1год(категория А) - 5 бэр;

* для населения аварийное облучение на 1год - 10 бэр;

* для персонала аварийное облучение на 1год - 25 бэр.

В соответствии с Законом Украины "О защите человека от влияния ионизирующих излучений" №15/98-ВР предусмотрены следующие превышения допустимой дозы облучения:

* для населения: 1мЗв/год (1000 мбэр/год - 0,1 бэр);

* для персонала: не больше 20 мЗв/год (2000 мбэр/год - 2 бэр).

Допускается до 5 бэр (50мЗв) при условии, что среднегодовая доза на протяжении пяти лет не больше 20 мЗв в год (2 бэр) в среднем.

Структура дозы облучение поглощенной за год выглядит таким образом:

* естественный фон - 200 мбэр;

* медицинская рентгенодиагностика - 150 мбэр;

* строительные материалы - 100 мбэр;

* дополнительные источники облучения - 50 мбэр.

Естественный радиационный фон обуславливается космическим излучением и естественными радиоактивными веществами. Интенсивность космического излучения зависит от высоты над уровнем моря и солнечной активности. Земными источниками излучений являются естественные радионуклиды, которые содержатся в веществах, используемых человеком в повседневной деятельности. Естественный радиационный фон для Украины составляет 0,01-0,03 мр/ч.

На земном шаре есть местности, в которых поглощенные дозы значительно превышают допустимые: Индия, штат Карала есть местность где доза составляет 40,2 рад/год; Бразилия - 20 рад/год; США-26 рад/год; Франция-170 рад/год.

Контроль радиоактивного загрязнения. Осуществляется с целью определения степени загрязнения радиоактивными веществами людей, животных, а также техники, одежды, средств индивидуальной защиты, продуктов, воды, фуража и других объектов. Степень радиоактивного загрязнения оценивается путем замеров мощности экспозиционной дозы излучения от этих объектов приборами (ДП-5, ИМД-21 и прочие) и сравнением их с нормативной.

В мирное время пользуемся нормами, которые определены в "Основных санитарных правилах. ОСП-72/87" и НРБУ-97.

Выводу из организма радиоактивных элементов способствует красный пигмент овощей и фруктов. Поэтому, если у вас в организме обнаружены радионуклиды, ежедневно употребляйте салаты из сырых овощей - моркови и свеклы красного цвета, капусты, сладкого перца, заправленные нерафинированным маслом или сметаной, а также фрукты и ягоды - красный виноград, изюм, курагу, черноплодную рябину, гранаты, яблоки. Что касается яблок, то содержащееся в них железо создает чистую кровь. Однако овощи и фрукты нужно подготовить для еды так, чтобы уменьшить в них содержание радионуклидов: в моркови нужно удалить сердцевину, обрезать концы и почистить, у свеклы обрезать снизу корешок, все волосяные отростки и верхушку, у капусты - снять три верхних слоя, вырезать кочерыжку.

Хорошим радиопротектором является белая фасоль, содержащая около 12,5% железа, много микроэлементов и витаминов. Из нее можно готовить первые и вторые блюда, но вводить ее в питание надо постепенно из-за сильного метеоризма.

Каши полезны лишь в том случае, если их тщательно жуют до разжижения слюной. То есть кашу нужно не есть, а как бы пить маленькими глотками. Очень полезна гречневая каша, не содержащая нитратов. Пшеничная каша необходима для улучшения зрения и укрепления нервной системы. Особенно нуждаются в ней жители тех зон, где в почве мало цинка.

Полезны также соки с красильными пигментами - виноградный, томатный, гранатовый и др., а также красные вина - содержащие кроме красного пигмента, витамины В, С, Е. В профилактических целях их следует пить три раза в день по столовой ложке. Картофель перед готовкой необходимо очистить, срезав слой толщиной около 5мм, т.к. в нем могут быть радионуклиды. После очистки его нужно дважды бланшировать в кипятке и только после этого заправлять в супы. Варить или запекать в кожуре картофель нельзя.

Особой осторожности требует сейчас молоко. Если нет гарантии, что оно чистое, не следует его пить. Лучше сделать из него творог. В этом случае количество радиоактивных элементов уменьшается в сотни раз, т. к. они собираются в сыворотке. Поэтому в сметане их немного, а в молоке значительно больше.

В растопленном масле вредных элементов нет совсем.

Если хлеб выпекается с использованием сыворотки, то радионуклиды собираются под корочкой, в тонком слое, который имеет вид «загрязненной» полоски толщиной 0,5см. Ее необходимо снимать перед едой. Да и вообще хлеба лучше есть поменьше.

С осторожностью следует употреблять мясо, а лучше вообще ограничить его употребление. Наибольшее количество радионуклидов содержит говядина. Лучше в этом отношении свинина и птица. Не рекомендуется готовить котлеты из мясного фарша, т.к. в нем есть сукровица, и при жарке радионуклиды остаются в еде. Следует также исключить из рациона бульоны и холодец. Можно готовить отварное мясо, но первый отвар слить. Абсолютно чистым продуктом считается свиной жир. Он имеет биохимические способности не пропускать радионуклиды. Полезно и безопасно есть сало. Не следует, есть яйца, т.к. радиоактивный стронций со скорлупы переходит в белок. Лучше приготовить яичницу. Летом рекомендуется хлебный квас, содержащий все витамины группы В, тертая редька и хрен, которые можно есть через двенадцать часов после приготовления: если натерли хрен или редьку утром, то есть вечером. Полезно также употреблять аскорбиновую кислоту с глюкозой три раза в день и квадевит (по одной таблетке после завтрака и обеда).

Следует предупредить «кофеманов» о том, что кофе задерживает радионуклиды в тканях организма. Лучше пить чайные бальзамы на основе общеукрепляющих и тонизирующих трав, но чай нужно пить только правильно заваренный и свежеприготовленный.

С целью профилактики нужно ежедневно утром и вечером промывать полость рта и носа раствором морской соли (1ч.л. на стакан воды) или поваренной соли с добавлением двух капель йода. При этом вымываются из полости рта и носа радиоактивная пыль, болезнетворные вирусы и микробы. Особенно следует обратить внимание на рекомендуемую систему питания и ее режим в дни магнитных бурь, когда геомагнитное и гелеомагнитное поле накладывается на радиоактивное.

5 . Зашита от электромагнитных полей (излуч е ний)

Различают электромагнитное поле естественного и антропогенного характера.

Естественные источники ЭМП. На Земле люди постоянно подвергаются воздействию ЭМП Земли, солнца и других планет. Так, вокруг Земли, существует электромагнитное поле напряженность 130 Вт/п и оно во времени претерпевает изменений (годовые, суточные, грозовых разрядов, разных осадков, бурь). Магнитное поле Земли имеет напряженность 47.3 А/м на северном, 39.8 А/м - на южном полюсах, 19.9 А/м - на магнитном экваторе. И оно постоянно претерпевает цикличные изменения(80-годовые и 11-годовые циклы). ЭМП Солнца на Землю колеблются от 10 МГц до 10 ГГц (спектр излучения от инфракрасного, видимого, ультрафиолетового, рентгеновского и до j- излучения). В процессе жизнедеятельности человечества выработан защитный механизм от ЭМП естественного происхождения, однако негативные последствия их влияния проявляются в нервных и психологических расстройствах, заболеваниях сердечно-сосудистой системы и т.д.

Антропогенные источники электромагнитных полей (ЭМП). Антропогенными источниками ЭМП являются: ЭМП естественного происхождения, линии электропередач (ЛЭП), открытые распределительные устройства, антенны теле и радиопередач, радиотехнические и электронные устройства, индукторы, конденсаторы технических устройств, генераторы связи высоких частот, электромагниты, трансформаторы и т.д.

Спектр источников излучения электромагнитных полей очень высок - от 0.003 Гц до 300 ГГц (табл. 2.6.4.)

Таблица 2.

Спектр диапазонов электромагнитных излучений

Название диапазона частот

Диапазон частот

Диапазон длин волн

Название диапазона длин волн

Низкие частоты (НЧ)

0,003…0,3 Гц

инфранизкие

промышленные

300Гц…30 кГц

звуковые

Высокие частоты (ВЧ)

300кГц…3МГц

короткие

Ультравысокие частоты (УВЧ)

ультракороткие

Сверхвысокие частоты (СВЧ)

300МГц…3ГГц

дециметровые

сантиметровые

миллиметровые

Основные параметры электромагнитных полей (ЭМП). Для постоянного магнитного (магнитостатического) поля (ПМП) основной характеристикой является напряженность магнитного поля Н, измеряется в А/м.

В постоянном электрическом (электростатическом) поле (ЭСП) основной характеристикой является его напряженность Е, измеряется В/м.

где: U - напряжение, В; l - расстояние, м.

где: I - сила тока, А; r - радиус окружности силовых линий, вокруг проводника по которому течет ток, м.

При переменном электрическом поле возникает совокупность магнитного и электрического полей взаимно перпендикулярных по направлению и распространяющихся в пространстве в виде электромагнитных волн.

Электромагнитное излучение характеризуется длиной волны, напряженностью магнитного (Н) и электрического (Е) полей

где: с1 - скорость распространения радиоволн, равная скорости распространения света: 300000 км/с = м/с; Т- период колебания, с; f - частота колебания, Гц.

Область распространения ЭМП от источника условно разделяют на три зоны: ближнюю (зону индукции), промежуточную (зону интерференции), и дальнюю (волновую или зону излучения).

Это пространство считается зоной облучения. Если рабочее место расположено в зоне индукции, работающий будет подвергаться воздействию периодически меняющихся электрического и магнитного полей, и их интенсивность будет определяться соответственно величинами Е и Н. В зоне индукции между Е и Н существует произвольное соотношение в зависимости от вида электромагнитного излучения (ЭМИ).

Зона индукции (зона формирования) простирается на расстояние

Очевидно в ближайшей зоне (индукции) находятся рабочая зона установок с НЧ, СЧ, ВЧ и УВЧ. Поэтому в них контроль проводится по измерению параметров Е и Н. (в этой зоне и промежуточной зоне электромагнитная волна еще не сформирована).

Зона излучения (волновая зона) простирается на расстояние R>л/(2П). В волновой зоне существует соотношение Е=377 Н.

А в дальней зоне (излучения) находятся рабочие места с источниками электромагнитного излучения с длиной волны менее 1м СВЧ. В этой зоне электромагнитная волна уже сформировалась, поэтому ЭМИ оценивается не по величинам Е и Н, а по плотности потока энергии (ППЭ), который проходит в 1 с через 1 м2 поверхности перпендикулярной направлению распространения волн (Вт/ м2).

Влияние электромагнитных полей радиочастот на организм чел о века. Степень влияния ЭМП на организм человека зависит от интенсивности поля, характера диапазона частот, продолжительности нахождения человека в опасной зоне облучения. Пренебрежительное отношение людей к опасности облучения обусловлено недооценкой или незнанием опасности облучения, отсутствием быстрого появления отрицательных последствий для организма и неспособностью органов чувств обнаруживать облучение.

Длительное воздействие электромагнитных излучений низкой частоты вызывает функциональное нарушение центральной нервной системы, изм енения в составе крови, сердечно- сосудистой системы (особенно при высокой напряженности ЭМИ).

Высокочастотное излучение вызывает в организме изменение условно- рефлекторной деятельности (торможение условных и безусловных рефлексов), падение кровяного давления, снижение пульса. Постоянное воздействие облучения может привести к стойким функциональным изменениям в нервной и сердечно- сосудистой системах.

При попадании человека в зону облучения, энергия магнитного поля частично поглощается его телом. Под действием высокочастотных полей в тканях возникают высокочастотные токи, сопровождающиеся тепловым эффектом. Электромагнитные поля при длительном воздействии могут вызывать повышенную утомляемость, раздражительность, головную боль, нарушение сна, понижение кровяного давления, изменение температуры тела и другие явления, связанные с расстройством центральной нервной и сердечно- сосудистой систем. Поля СВЧ, особенно сантиметрового и миллиметрового диапазонов, кроме того, вызывают изменения в крови, помутнение хрусталика (катаракта), ухудшение обоняния, а в отдельных случаях наблюдаются выпадение волос, ломкость ногтей и т.п.

Функциональные сдвиги, вызванные воздействием электромагнитных полей после прекращения облучения обратимы. При этом следует учитывать, что обратимость функциональных сдвигов не беспредельна. Она определяется интенсивностью облучения, продолжительностью воздействия, а также индивидуальными особенностями организма. Поэтому профилактика профессиональных заболеваний должна включать, наряду с разработкой технических средств защиты, организационные мероприятия. Одной из основных проблем является защита работников на их рабочих местах.

Гигиеническое нормирование электромагнитных излучений. Гигиеническим критерием безопасного пребывания человека в электромагнитном поле промышленной частоты(50 Гц) с напряжением 400 кВ и более принята напряженность электрического поля (Е). Нормируется, при этом, время пребывания человека в зависимости от напряженности электрического поля. В соответствии с ГОСТ 12.002-84 «Электрические поля промышленной частоты»: предельно допустимый уровень (ПДУ) напряженности Е устанавливается равным 25 кВ/м; пребывание в зоне с напряженностью более 25 кВ/м без средств защиты запрещено. В таблице 2.6.5. приведено время безопасного пребывания людей в электрическом поле.

Таблица. 3.

Время безопасного пребывания людей в зоне электромагнитных полей

Допустимое время пребывания в ЭП может быть реализовано единовременно и по частям в течении рабочего дня. В остальное время Е не должно превышать 5 кВ/м.

Напряженность постоянных магнитных полей на рабочем месте не должна превышать 8 кА/м. А ПДУ напряженности электростатических полей составляет 60 кВ/м в течении одного часа.

При напряженности менее 20 кВ/м время пребывания в электростатических полях не регламентируется.

В диапазоне частот 60 кГц … 300 МГц нормируются напряженности электрической и магнитной составляющих, электромагнитных излучений.

Согласно ГОСТ 12.1.006-84 «ССБТ электромагнитного поля радиочастот. Общие требования безопасности» напряженность ЭМП на рабочих местах и в местах возможного нахождения персонала не должна превышать значений приведенных в табл. 2.6.6

Таблица 4.

Предельно-допустимые уровни напряженности электромагнитного поля (радиочастотный диапазон) при продолжительности воздействия 8 ч.

В диапазоне частот 300МГц - 300 ГГц нормируется плотность потока энергии (ППЭ) электрического поля. Предельную плотность потока энергии ЭМП радиочастот 300МГц-300ГГц на рабочих местах и в местах возможного нахождения персонала, связанного с воздействием ЭМП, устанавливают исходя из допустимого значения энергетической нагрузки на организм и времени пребывания в зоне облучения. Во всех случаях она не должна превышать 10 Вт/м. кв., а при наличии рентгеновского излучения или высокой температуры воздуха в рабочих помещениях (выше 28 С) - 1 Вт/м. кв. (Гост 12.1.006 - 84).

Приведенные значения ПДУ напряженности электрического поля в табл. 2.6.6. не распространяются на радио - и теле излучения (нормируются отдельно).

Защита от воздействия ЭМП - радиочастот. Основными способами защиты от воздействия ЭМП - радиочастот являются: уменьшение интенсивности облучения, экранирование рабочего места или удаление его от источника облучения, применение средств индивидуальной защиты. На практике может применяться один или одновременно несколько методов защиты.

Источники излучения или рабочие места экранируют металлическими камерами или щитами, покрытыми поглощающими материалами или сделанными из ферритового поглощающего материала, а также мягкими экранами из специальных тканей, обладающих экранирующими свойствами. Применение различных экранирующих устройств является надежной защитой от электромагнитного излучения. Действие всех применяемых в настоящее время защитных материалов основано на их способности отражения или поглощения излучения. К отражающим материалам относятся любые обладающие высокой токопроводимостью материалы, например металлы. Однако, эти материалы обладают и отрицательным свойством: в некоторых случаях возможно образование отраженных электромагнитных полей, которые могут усилить облучение.

Степень ослабления напряженности электромагнитного поля за счет экранирования выражается величиной эффективности экранирования, она показывает, во сколько раз уменьшается напряженность поля на данном участке при экранировании его источника:

где Э - эффективность экранирования;

Ео - напряженность поля до экранирования;

Еэ - напряженность поля после экранирования.

Сплошные металлические экраны обеспечивают в СВЧ - диапазоне надежное экранирование при любых практически встречающихся интенсивностях. Сетчатые экраны обладают худшими экранирующими свойствами, но широко используются, когда достаточно ослабления мощности до 1000 раз. Удаление рабочего места от источника облучения - одно из средств снижения интенсивности облучения людей на предприятии. Оно реализуется благодаря дистанционному управлению и автоматизированному контролю, определению границы опасной зоны, где прогноз потока мощности (ППМ) может превышать предельно допустимые значения, определяются при работе аппаратуры в режиме максимальной мощности излучения. По границам зон с ППМ, превышающей ПДУ, следует установить предупредительные знаки: «Не входить! Опасно!».

Ориентировочное расстояние от источника излучения, на котором ППМ не превышает ПДУ, можно определить по формуле:

где Rн - искомое расстояние, м; R - расстояние, на котором производились измерения, м; Р - измеренная ППМ, мкВт/см2; Рдоп - допустимая ППМ, мкВт/см2.

Снижение интенсивности электромагнитных полей в рабочей зоне может быть достигнуто экранированием источников облучения сплошными металлическими и сетчатыми экранами. Интенсивность облучения возможно снизить также с помощью поглощающих покрытий, часто в качестве материала экрана применяют фольгу.

В качестве защитных покрытий применяют резиновые коврики с коническими шипами, магнитоэлектрические пластины с покрытием на основе поролона ВРМП, поглощающие электромагнитную энергию соответственно в диапазоне 0,8 - 10,6 см, и т.п.

Для снижения вредного влияния ЭМП на работающих важное место занимает установление рационального режима труда и отдыха и применение средств индивидуальной защиты (СИЗ).

В качестве СИЗ применяется спецодежда, которая изготовлена из металлической ткани (комбинезоны, халаты, передники, куртки с капюшонами с вмонтированными в них защитными очками). При интенсивном излучении более 10 Вт/см2 применение защитных очков обязательно, даже, при кратковременных работах. Применяются специальные очки: типа ОРЗ-5 (стекла которых покрыты слоем полупроводника из оксида олова - ослабление мощности в диапазоне волн 0,8 …..150см более чем в 1000 раз), сетчатые очки в виде полумаски с числом ячеек 186-560 на см 2 при диаметре проволоки 0,07- 0,14 мм.

Следует учесть, что применение СИЗ (металлизированная среда) повышает электроопасность.

6 . О беспечение безопасности при работе и эксплуатации лаз е ров

Оптические квантовые генераторы (ОКГ), или лазеры, находят широкое применение в различных сферах жизнедеятельности Украины: обработка материалов (резка, пайка, точечная сварка, сверление отверстий в металлах, сверхтвердых материалах и кристаллах), строительство, радиоэлектроника, медицина, космос и т.д.

Принцип действия лазера основан на свойстве атома (сложной квантовой системы) излучать фотоны при переходе из возбужденного состояния.

Возбуждение атомов достигается с помощью различных приемов подачи на рабочее тело (кристалл, газ, жидкость) энергии накачки (свет, ВЧ - электромагнитное поле и т.д.). При этом число атомов, находящихся в возбужденном состоянии, возникает больше числа атомов, находящихся на основном уровне энергии. Лавинообразный переход атомов за короткий промежуток времени из возбужденного состояния в основное приводит к возникновению лазерного излучения.

Излучение существующих лазеров охватывает практически весь оптический диапазон - от ультрафиолетовой до инфракрасной области спектра электромагнитных волн. Электромагнитная энергия образуется в результате возбуждения атомов так называемых рабочих веществ, создающих лазерный эффект. У большинства современных лазеров плотность потока мощности достигает 1011 - 1014 Вт/см2. Лазеры позволяют концентрировать энергию на сравнительно малой площади.

ОКГ в зависимости от характера генерации лазера подразделяются на импульсные (длительность излучения 0,25 с.) и лазеры непрерывного действия (длительность излучения 0,25 с. и более).

Лазерное излучение является электромагнитным излучением, генерируемым в диапазоне длин волн 0,2 - 1000 мкм, который может быть разбит в соответствии с биологическим действием на ряд спектров:

* от 0,2 до 0,4 мкм - ультрафиолетовая область;

* свыше 0,4 до 0,75 мкм - видимая область;

* свыше 0,75 до 1,4 мкм - ближняя инфракрасная область;

* свыше 1,4 мкм - дальняя инфракрасная область.

Основной энергетической характеристикой лазера при импульсном режиме генерации является энергия лазерного импульса, его длительность. Импульсные генераторы характеризуются энергией выхода (Дж), нормируемым параметром является плотность энергии на единицу поверхности (Дж/см2).

Генератор непрерывного излучения характеризуется выходной мощностью (Вт) - нормирование проводится по отношению мощности к площади поверхности (Вт/см2).

Лазерное излучение разделяется на:

* прямое (ограниченное телесным углом);

* рассеянное (за счет прохождения луча через вещество среды);

* зеркальное и диффузное отражения.

Лазер является источником нескольких видов опасности, главным из которых является его излучение.

Согласно ГОСТ 12.1.040-83 “Лазерная безопасность. Общие положения” по степени опасности генерирующего ими излучения лазеры подразделяются на четыре класса:

I-й класс - лазеры, выходное излучение которых не представляет опасности для глаз и кожи;

II-й класс - лазеры, выходное излучение которых представляет опасность при облучении глаз прямым или зеркально отраженным излучением;

III-й класс - лазеры, выходное излучение которых представляет опасность при облучении глаз прямым, зеркально отраженным, а также диффузно отраженным излучением на расстоянии 10 см от отражающей поверхности;

IV-й класс - лазеры, выходное излучение которых представляет опасность при облучении кожи отраженным излучением на расстоянии 10 см от отражающей поверхности.

Класс лазера устанавливается предприятием-изготовителем.

Биологическое воздействие лазерного излучения на организм делится на две группы:

* первичные эффекты или органические изменения, возникающие непосредственно в облучаемых тканях персонала;

* вторичные эффекты - различные неспецифические изменения, возникающие в тканях в ответ на облучение.

Основные негативные проявления на организм человека: тепловые, фотоэлектрические, люминесцентные, фотохимические.

При попадании лазерного излучения на поверхность металла, стекла и др. происходит отражение и рассеивание лучей.

Опасные и вредные факторы работы ОКГ:

* лазерное облучение (прямое, рассеянное, отраженное);

* световое излучение от импульсных ламп;

* ультрафиолетовое излучение от кварцевых газоразрядных трубок;

* шумовые эффекты;

* ионизирующее излучение;

* электромагнитные поля ВЧ и СВЧ от генераторов накачки;

* инфракрасное излучение и тепловыделение от оборудования и нагретых поверхностей;

* агрессивные и токсические вещества, используемые в конструкции лазера.

Степень воздействия лазерного излучения на организм человека зависит от длины волны, интенсивности (мощности и плотности) излучения, длительности импульса, частоты импульсов, времени воздействия, биологических особенностей тканей и органов. Наиболее биологически активно ультрафиолетовое излучение, вызывающее фотохимические реакции.

За счет термического действия лазерного излучения на коже возникают ожоги, а при энергии более 100 Дж происходит разрушение и сгорание биоткани. При длительном воздействии импульсного излучения в облученных тканях энергия излучения быстро преобразуется в теплоту, что ведет к мгновенному разрушению тканей.

Нетермическое действие лазерного излучения связано с электрическими и фотоэлектрическими эффектами.

Поток энергии, попадая на биологические ткани, вызывает в них изменения, наносящие вред здоровью человека. Опасно это излучение и для органов зрения. Особенно опасно, если лазерный луч пройдет вдоль зрительной оси глаза. Если луч лазера фиксируется на сетчатке глаза, то может произойти коагуляция сетчатки, в результате чего возникнет слепота в пораженной области сетчатки. При этом необходимо помнить, что опасность для органов зрения представляет не только прямой, но и отраженный лазерный луч, даже если отражающая его поверхность незеркальная.

В качестве основного критерия при нормировании лазерного излучения принята степень изменений, которые происходят под его воздействием в органах зрения и коже. Согласно СанНиП 5804-91 “Санитарные нормы и правила устройства и эксплуатации лазеров” и ГОСТ 12.1.040-83 “ССБТ. Лазерная безопасность. Общие требования” установлены предельно допустимый уровень (ПДУ) лазерного излучения в зависимости от длины волны (табл. 2.6.7.).

За ПДУ лазерного излучения принимается энергетическая экспозиция облучаемых тканей. Энергетической экспозицией называется отношение падающей энергии к площади этого участка. Единицей измерения является Дж/см2.

Суммирующий биологический эффект лазерного излучения оценивается с учетом одновременного воздействия различных параметров излучений и времени воздействия. Например, энергетическая экспозиция на роговице глаза и коже за общее время облучения в течение рабочей смены в диапазоне длин волн 0,2…0,4 мкм составляет 10-8-10-3 Дж/см2.

Методы защиты от лазерного излучения подразделяются на: инженерно-технические, организационные, санитарно-гигиенические, планировочные, а также включают использование средств индивидуальной защиты.

Цель организационных методов защиты - исключить попадание людей в опасные зоны при работе на лазерных установках. Этого можно достичь, проводя соответствующее обучение операторов безопасным приемам труда и проверку знаний инструкций по проведению работ. При этом необходимо помнить, что доступ в помещение лазерных установок разрешается только лицам, непосредственно на них работающим; опасная зона должна быть четко обозначена и ограждена стойкими непрозрачными экранами.

Таблица 5.

ПДУ лазерного излучения в зависимости от длины волны

Длина волны, мкм

Нуф, Дж/см2

от 0,200 до 0,210

от 0,210 до 0,215

от 0,215 до 0,290

от 0,290 до 0,300

от 0,300 до 0,370

свыше 0,370

Принятие мер лазерной безопасности зависит от класса лазера. Все лазеры должны быть промаркированы знаком лазерной опасности с надписью “Осторожно! Лазерное излучение!”.

Лазеры должны размещаться в специально оборудованных помещениях, а на дверях помещений лазеров II, III и IV классов должны быть установлены знаки лазерной опасности.

Лазер IV класса опасности должны располагаться в отдельных помещениях, стены и потолки должны быть отделаны покрытиями с матовой поверхностью (с высоким коэффициентом поглощения), в помещении не должно быть зеркальных поверхностей.

При размещении лазеров II, III, IV классов с лицевой стороны пультов и панелей управления должно быть свободное пространство шириной не менее 1,5м при однорядном расположении лазеров и шириной не менее 2,0 м при двухрядном. С боковых и задних стенок лазеров при наличии открывающихся дверей, съемных панелей должно быть свободное расстояние не менее 1 м.

Инженерно-технические и планировочные методы защиты предусматривают уменьшение мощности применяемого лазера и надежную экранировку, правильную установку оборудования (луч лазера должен быть направлен на капитальную не отражающую огнестойкую стену), исключение блеска отражающих поверхностей и предметов, создание обильного освещения, чтобы зрачок глаза всегда имел минимальные размеры.

Лазеры IV класса обязательно должны иметь дистанционное управление, а дверь в помещение должна иметь защитную блокировку со звуковой и световой сигнализацией.

Излучение лазеров II, III, IV классов не должно попадать на рабочие места. Материалы для экранов и ограждений должны быть не горючими с минимальными коэффициентами отражения по длине волны генерирующего лазера. Под воздействием лазера материалы не должны выделять токсических веществ.

Периодический дозиметрический контроль лазерного излучения заключается в измерении параметров излучения в заданной точке пространства и сравнении полученных значений плотностей мощности непрерывного излучения, энергии импульсного или импульсно-модулированного излучения, энергетической плотности рассеянного излучения со значениями соответствующих ПДУ (проводится не реже 1 раза в год при эксплуатации лазеров II, III и IV классов).

Контроль проводится обязательно при введении в эксплуатацию лазеров II, III и IV классов, а также при внесении изменений в конструкцию лазеров, при изменении конструкции средств защиты, при организации новых рабочих мест.

Порядок проведения дозиметрического контроля и требования к измерительной аппаратуре должны соответствовать ГОСТ 12.1.031-81 “ССБТ. Лазеры. Методы дозиметрического контроля лазерного излучения”. Измерение энергетических характеристик лазерного излучения проводится приборами типа ИЛД-2.

К обслуживанию лазеров допускаются лица не моложе 18 лет, не имеющие противопоказаний (приказ № 700 от 19.06.84 г. Минздрава СССР). Персонал проходит инструктаж и обучение методам безопасной работы и подвергается при принятии на работу и периодическим (1 раз в год) медицинским осмотрам с участием терапевта, невропатолога и окулиста.

Оптические квантовые генераторы должны соответствовать эксплуатационной документации. В паспорте должны быть указаны: длина волны (мкм); мощность энергии (Вт, Дж); длительность импульса (с); частота импульса (Гц); начальный диаметр (см); расходимость пучка (ряд); класс лазера (I - IV).

Кроме паспорта на лазер должны быть инструкции по эксплуатации, технике безопасности, производственной санитарии для лазеров II - IV классов; протокол наладки лазера, проверки изоляции и заземления, протокол измерения уровней лазерного излучения, протокол измерения интенсивности электромагнитного и ионизирующего излучения на рабочих местах, протокол анализов воздушной среды рабочей зоны на содержание токсических и агрессивных химических веществ для лазеров, журнал оперативной записи по ремонту и эксплуатации установки для лазеров II - IV классов, приказ о назначении ответственного лица, обеспечивающего исправное состояние и безопасную эксплуатацию лазеров.

Работа с лазерными установками должна проводиться с ярким общим освещением.

ЗАПРЕЩАЕТСЯ в момент работы лазерной установки:

* осуществлять визуальный контроль степени излучения, генерацией;

* направлять излучение лазера на человека;

* персоналу носить блестящие предметы (серьги, украшения);

* обслуживать лазерную технику одним человеком;

* находиться посторонним лицам в зоне излучения;

* размещать в зоне луча предметы, вызывающие зеркальное отражение.

Рабочие места должны быть оборудованы вытяжной вентиляцией.

При недостаточном обеспечении безопасности коллективными средствами защиты применяются индивидуальные СИЗ. К средствам индивидуальной защиты относятся специальные противолазерные очки (светофильтры), щитки, маски, технологические халаты и перчатки (черного цвета из обычных хлопчатобумажных тканей).

Ношение защитных очков со светофильтрами (табл. 2.6.8) обеспечивает интенсивное снижение облучения глаз лазерным облучением. Светофильтры должны соответствовать специальной оптической плотности, спектральной характеристике и максимально допустимому уровню излучения.

* оранжевое стекло

** сине-зеленое стекло

*** бесцветное стекло

Все существующие электромагнитные излучения (ЭМИ) различаются частотой колебаний и длиной волн. Они сгруппированы по видам излучения и обладают различающимися между собой физической природой и биологическим действием на организм человека.

Виды излучения:

1. ЭМИ (поля радиочастотного диапазона)

2. ЭМИ оптического диапазона:

Инфракрасное

Ультрафиолетовое

3. Лазерное излучение

4. Ионизирующие излучение:

Рентгеновское и

Гамма-излучение;

Альфа-излучение;

Бета- излучение;

Позитронное;

Нейтральное

Радиочастотные электромагнитные излучения

Источники электромагнитных волн радиочастотного диапазона: трансформаторы, индукционные катушки, радиостанции большой мощности. При работе этих источников возникают электромагнитные поля (ЭМП), влияние которых на организм связано главным образом с тепловым эффектом. Длительное действие ЭМП радиочастотного диапазона умеренной интенсивности не оказывает явного теплового эффекта, но влияет на биофизические процессы в клетках и тканях. Наиболее чувствительны к их воздействию центральная нервная и сердечно - сосудистая системы. У людей появляются головные боли, гипотония, повышения утомляемость, изменяет проводимость сердечной мышцы, наблюдается также похудение, выпадение волос, ломкость ногтей.

Ослабление мощности воздействующего на человека ЭМП достигают удалением рабочего места от источника излучения, а также экранированием источника и рабочих мест.

В качестве средств индивидуальной защиты применяют экранирующие костюмы, выполненные из токопроводящей или металлизированной ткани. Органы зрения предохраняют от вредного действия ЭМП с помощью специальных очков, стекла которых покрыты слоем полупроводникового оксида олова или мелкосетчатыми очками в виде полумаски.

Ультрафиолетовое излучение (УФИ)

В умеренных дозах УФИ положительно влияет на организм человека: улучшает обмен веществ, усиливает иммунобиологическую сопротивляемость, стимулирует образование в коже витамина D, препятствующего возникновению рахита.

К производственным вредностям относят УФИ, возникающие при электросварке и работе ртутно-кварцевых ламп. Воздействие происходит на кожу и глаза. Воздействие на глаза является причиной профессиональной болезни сварщиков.

В качестве средств индивидуальной защиты используют экраны, ширмы и специальные кабины (для сварщиков). Из средств индивидуальной защиты кожных покровов работающих применяют спецодежду и рукавицы, а глаз и лица – щитки, шлемы и очки со светофильтрами.

Лазерное излучение

При работе с лазерными установками обслуживающий персонал может подвергаться воздействию прямого, рассеянного и отражённого лазерного излучения, светового, ультрафиолетового и инфракрасного излучения.

Для работающего с лазерами персонала следует проводить предварительный и периодический (ежегодно) медицинский осмотр. Используют средства индивидуальной защиты глаз, защитных масок. В зависимости от длины волны излучения очкам подбираются стёкла (оранжевого, сине-зелёного цвета и бесцветные).

Ионизирующие излучение

Ионизирующие излучение могут вызвать местные и общие поражения. Местные поражения кожи бывают в виде ожогов, дерматитов и других форм. Иногда возникают доброкачественные новообразования, возможно также развитие кожного рака. Длительное воздействие радиации на хрусталик служит причиной катаракты.

Для учёта неодинаковой опасности разных видов ионизирующих излучений введено понятие эквивалентная доза. Она помогает оценить последствия облучения отдельных органов и тканей человека с учётом радиочувствительности.

Защиту от внешнего облучения проводят в трёх направлениях:1) Экранированием источника;2) увеличением расстояния от него до работающего; 3) сокрушением времени пребывания людей в зоне облучения. В качестве экранов применяются хорошо поглощающие ионизирующие излучения материалы, такие, как свинец, бетон.

58.Сущность проектирования санитарно-бытовых помещений и полевых станов, их размеще­ние и экономическое значение,

  • 4. Виды несчастных случаев и профессиональных заболеваний.
  • 4.Защита от шума и вибрации.
  • 5. Классификация опасных и вредных производственных факторов.
  • 5. Микроклимат и вентиляция помещений.
  • 6. Защитное заземление. Зануление.
  • 6. Аттестация рабочих мест по условиям труда.
  • 7. Понятия о производственной пыли, причины ее образования на строительных объектах. Общие и индивидуальные средства защиты от пыли.
  • 8. Средства защиты человека от поражения электрическим током. Факторы, влияющие на исход поражения электрическим током.
  • 9. Основные мероприятия по защите от электротравматизма. Средства защиты человека от поражения электрическим током.
  • 9. Метеорологические условия производственной среды. Общие требования, к системам вентиляции, кондиционирование воздуха и отопления производственных помещений.
  • 10. Действие электрического тока на организм человека. Виды поражения.
  • 11. Правила оказания первой помощи пострадавшим от электрического тока.
  • 11. Классификация зданий по степени огнестойкости. Противопожарные преграды.
  • 12. Санитарно-гигиенические факторы условий труда. Состояние здоровья работающих.
  • 13. Вибрации, причины их возникновения. Влияние вибраций на организм человека.
  • 13. Пожарная профилактика при проектировании и строительстве предприятий.
  • 14. Организация работы кабинета по охране труда. Положение об организации работ по охране труда предприятиях и строительных объектах
  • 14. Требования безопасности к подмостям и лесам.
  • 15. Вредные производственные факторы. Профессиональные заболевания.
  • 18. Система стандартов безопасности труда (ссбт), значение (ссбт), ее структура.
  • 18. Защитное заземление и зануление. Защитное отключение.
  • 19. Статическое электричество. Воздействие статического электричества на человека. Защита от статического электричества.
  • 20. Положением о расследовании и учете несчастных случаев на производстве. Акты о несчастных случаях, порядок их оформления.
  • 21. Основные документы по законодательству об охране труда, кодекс законов о труде рб
  • 21. Требования безопасности к погрузочно-разгрузочным работам.
  • 22. Цели и задачи предмета, место и назначение его в подготовке специалиста.
  • 22. Требования к персоналу, обслуживающему электроустановки.
  • 23. Классификация помещений по степени опасности поражения электрическим током.
  • 25. Явление при стекании тока в землю. Напряжение прикосновения и шага.
  • 26. Виды инструктажи, их характеристика, методы проведения.
  • 27. Индивидуальные и коллективные средства защиты от шума и вибрации.
  • 28. Порядок организации и проведения на предприятии противопожарного инструктажа и пожарно-технического минимума.
  • 29. Требования безопасности к устройству зданий и помещений. Санитарно-бытовые помещения.
  • 31. Классификация причин несчастных случаев. Показатели травматизма.
  • 31. Классификация зданий по степени огнестойкости. Противопожарные преграды.
  • 32. Оперативный трехступенчатый контроль за состояние охраны труда на предприятиях и строительных объектах.
  • 33. Санитарная классификация предприятий. Санитарно-защитные зоны.
  • 33. Виды инструктажей, их характеристика, методика проведения.
  • 34. Порядок и виды обучения рабочих и служащих безопасности труда. Система проведения инструктажей.
  • 34. Средства пожарной сигнализации и принцип их действия.
  • 35. Аттестация рабочих мест по условиям труда.
  • 35. Классификация производств по пожаро- и взрывоопасности.
  • 4. Особенности гигиены труда подростков и женщин
  • 5. Служба охраны труда на предприятии.
  • 8. Сущность процесса тушения. Противопожарное водоснабжение. Огнетушители.
  • 9. Определение и содержание охраны труда.
  • 16. Причины пожаров на предприятиях отрасли и строительных объектах
  • 17. Права и обязанности государственной инспекции.
  • 21. Права и обязанности должностных лиц по охране труда.
  • 22. Общие сведения о процессе горения. Виды горения. Понятие о вспышке.
  • 30. Предмет, задачи и методы гигиены труда.
  • 32. Классификация зданий по степени огнестойкости. Противопожарные преграды.
  • 34. Ответственность работников за противопожарное состояние объекта.
  • 38. Действия шума на организм человека. Нормирование шума.
  • 40. Причины взрывов на предприятиях и строительных объектах.
  • 44. Инструкции о мерах пожарной безопасности на объекте, в цехах, на рабочем месте.
  • 46. Основные светотехнические величины и единицы их измерения.
  • 2. Производственное излучение. Защита от производственных излучений.

    Ионизирующее излучение – это потоки частиц прохождение, которых через вещества приводит к ионизации или возбуждении его атомов или молекул.

    Радиоактивность – это самопроизвольное превращение неустойчивых ядер в ядра других элементов, при этом испускаются альфа, бета, гамма излучения.

    Альфа излучение характеризуется малой проникающей способностью. В тканях организма несколько микрон, в воздухе до 9см.

    Бета излучения проникающая способность в воздухе 18см в организме 2,5см.

    Гамма излучение характеризуется большой проникающей способностью.

    Нейтронное излучение – это поток нейтронов, проникающая способность, которых зависит от энергии и состава атома вещества с которым оно взаимодействует.

    Рентгеновское излучение – характеризуется большой проникающей способностью, возникает в любых электровакуумных установках.

    Облучение бывает: - внешнее (бета, гамма), - внутреннее (все).

    Заболевание вызываемое облучением бывает в острой и хронической форме.

    Различают три степени хронической лучевой болезни: - легкая, - средняя, - тяжелая.

    ПДД облучения: однократная доза не более 3бэр при условии что годовая доза не более 5бэр, доза накопления до 30 лет должна составлять не более 60бэр. Суммарная доза при профессиональных облучениях вычисляется по формуле Д=<5(N-18).

    Средства защиты от излучения: - экранирование рабочих мест, - свинцовая резина, - использование хлопчатобумажных белых халатов и комбинезонов, - пленочная одежда, - для защиты рук медицинские перчатки, перчатки из просвинцованной резины, - использование пневматических костюмов и пневмошлемов, - для защиты глаз очки с специальным покрытием, - ботинки из искусственной кожи или лавсан, сапоги из специальной резины, - использование бахил, - респиратор.

    3. Классификация помещений по степени опасности поражения электрическим током.

    Все помещения делятся на три группы:

    1) помещение без повышенной опасности (сухие помещения с относительной влажностью до 75%, температурой воздуха от 5 до 25º, с полами обладающими большим электра сопротивлением без токопроводящей пыли);

    2) помещение с повышенной опасностью (влажность больше 75%, температура 25º и больше, сухие не отапливаемые и чердачные помещения, лестничные клетки, помещения с токопроводящей пылью и токопроводящими полами) (1 раз в год);

    3) помещение особо опасное (влажность 100 и более %, с наличием едких газов и паров, склады где хранятся взрывоопасные вещества и помещения, где присутствуют два и более условия повышенной опасности)(контроль изоляции 2 раза в год)

    4. Виды несчастных случаев и профессиональных заболеваний.

    Несчастный случай на производстве - это событие, в результате которого работник (застрахованный) получил увечье или иное повреждение здоровья при исполнении им трудовых обязанностей

    По правовым последствиям для потерпевшего несчастные случаи подразделяются на две группы - производственные и бытовые.

    НС связанные с трудовой деятельностью:

    1.на производстве:

    Нс при выполнении трудовых обязанностей(на территории предприятия: на рабочем месте, вблизи рабочего места, связан с производством, не связанный с производством; вне территории предприятия: командировки, задание предприятия)

    На транспорте предоставляемом предприятием

    2.вне производства (по пути на работу или с работы, при выполнении гос. или общественных поручений, при выполнении функций донора, при выполнении гражданского долга)

    Несчастные случаи являются производственными, если они произошли:

    В течение рабочего дня на территории организации или вне ее, а также при выполнении работ в сверхурочное время, выходные и праздничные дни;

    При следовании к месту работы или с работы на транспорте, предоставленном работодателем, либо на личном транспорте при наличии договора о его использовании в производственных целях;

    При следовании к месту командировки и обратно;

    При следовании на транспортном средстве в качестве сменщика во время междусменного отдыха (водитель-сменщик);

    При работе вахтово-экспедиционным методом во время междусменного отдыха, а также при нахождении на судне в свободное от вахты и судовых работ время;

    При привлечении работника к участию в ликвидации последствий катастрофы, аварии и других чрезвычайных происшествий.

    По тяжести последствий несчастные случаи подразделяются:

    На несчастные случаи со смертельным исходом;

    Несчастные случаи с тяжелым исходом;

    Несчастные случаи без тяжелых последствий.

    По количеству потерпевших работников несчастные случаи подразделяются:

    На групповые, происшедшие с двумя и более работниками, независимо от тяжести последствий;

    Происшедшие с одним работником.

    Несчастный случай в быту (бытовой) - это несчастный случай, происшедший с человеком в свободное от работы время при выполнении работ в домашней обстановке, на даче и при других аналогичных обстоятельствах.

    Ряд производственных процессов в черной металлургии сопровождается воздействием на работающих инфракрасного, видимого, ультрафиолетового и ионизирующего излучений.

    Видимое излучение

    Чрезмерная яркость производственных источников видимого излучения при обслуживании сталеплавильных агрегатов и нагревательных устройств в прокатных цехах, а также при выполнении сварочных работ вызывает явление временной слепимости и отрицательно влияет на светочувствительные элементы сетчатки глаз человека.

    Для предупреждения слепимости работающих надо устранять источники чрезмерной яркости, заменяя, например, открытую электросварку сваркой под слоем флюса, а при невозможности устранения источников яркости - применять очки с цветными стеклами (светофильтрами).

    Ультрафиолетовое излучение

    Невидимые ультрафиолетовые лучи появляются в источниках излучения с температурой выше 1500 °С и достигают значительной интенсивности при температуре более 2000 °С. В металлургии ультрафиолетовое излучение вызывается такими процессами, как плавление стали в дуговых электропечах, в мартеновских печах и конвертерах с применением кислорода и при сварочных работах. Ультрафиолетовое излучение отрицательно влияет на сетчатку глаз, вызывая болезненные воспалительные процессы. Длительное воздействие ультрафиолетовых лучей вызывает также кожные заболевания и отрицательно влияет на центральную нервную систему человека.

    Для защиты от ультрафиолетового излучения применяется экранирование источников излучения, а также спецодежда для работающих и светофильтры (очки, шлемы) из темно-зеленого стекла для защиты глаз.

    В небольших дозах ультрафиолетовое излучение оказывает положительное действие, увеличивая работоспособность человека и повышая сопротивляемость организма инфекции.

    Рентгеновское излучение

    Рентгеновскому излучению в черной металлургии подвергается персонал, обслуживающий рентгеновские установки, применяемые для исследований и дефектоскопии металла. Отрицательное воздействие рентгеновского излучения выражается в ухудшении самочувствия человека (слабость, головные боли, рвоты и т. п.), в изменении нормального состава крови, в повреждении зрения и поражении кожи вплоть до возникновения рака кожи.

    Для защиты работающих от рентгеновского излучения необходимо уменьшать рассеивание рентгеновских лучей и защищать людей экранами, задерживающими излучение (свинец, свинцовые стекла для защиты глаз). Кроме того, для рентгенологов сокращается рабочий день (до 4 ч) и увеличивается продолжительность отпуска (до 6 недель).

    Радиоактивные вещества

    В металлургии применяются радиоактивные изотопы для контроля за технологическими процессами выплавки чугуна и стали и контроля за износом огнеупорных материалов. Облучение ионизирующими излучениями и попадание в организм радиокативных веществ представляет большую опасность для здоровья и жизни -работающих.

    Радиоактивный распад сопровождается выделением альфа- и бета-частиц и гамма-излучением. За единицу дозы рентгеновского или гамма-излучения принят рентген (р). Один рентген соответствует поглощению воздухом 7,07 - 1010 эв/см3. Электрон-вольт (эв)-энергия, которую приобретает электрон при прохождении разности потенциалов в один вольт (1 эв=1,6027 10 -19 Дж).

    При разовой дозе облучения всего организма в 100-200 р возникает заболевание человека лучевой болезнью в легкой форме. Облучение в 200-400 р приводит к средней степени лучевой болезни, потере трудоспособности; а доза облучения более 400 р вызывает тяжелую степень лучевой болезни, нередко приводящую к смерти. Доза облучения в 600 р является смертельной. Вообще степень заболевания зависит от размеров облученной поверхности тела. Так, например, если дозой в 600 р будет облучаться участок кожи в несколько квадратных сантиметров, то это не вызовет лучевой болезни. Облучение более 30% поверхности тела приведет к тяжелым заболеваниям.

    При лучевой болезни резко изменяется состав крови (уменьшается в несколько раз число белых кровяных шариков с одновременным уменьшением и красных кровяных шариков).

    Для предупреждения лучевой болезни при работе с радиоактивными веществами работающие не должны подвергаться облучению более предельно допустимой дозы (ПДД). Эта доза по действующим санитарным нормам (1960 г.) равна 0,1 рентгена в неделю. Если облучению подвергаются только кисти рук, то ПДД допускается увеличить в несколько раз (в некоторых случаях до 10 раз).

    Для защиты от ионизирующих излучений применяются следующие методы:

    • защита расстоянием (увеличивая расстояние от источника излучения);
    • защита временем (уменьшая время пребывания в зоне облучения);
    • защита экранированием источников излучения.

    Защита от альфа-частиц достигается применением резиновых перчаток и спецодежды. Открытые части тела, удаленные на расстояние более 10 см от источника излучения, не подвергаются вредному воздействию альфа-частиц.

    Защита от бета-частиц, разрушительно воздействующих на слизистые оболочки и на роговицу глаз, достигается применением специальных захватов, щипцов, защитных экранов, а также предохранительных очков.

    От гамма-лучей требуется применять более надежную защиту в связи с их большой проникающей способностью. Основным средством защиты является экранирование источников излучения. В качестве средств индивидуальной защиты применяется спецодежда, резиновые перчатки, спецбелье и спецобувь. Если возникает опасность попадания радиоактивных веществ на кожу или в органы дыхания (радиоактивные жидкости, порошки и т. п.), то используются дополнительные средства защиты (полихлорвиниловая спецодежда, резиновая обувь, пневмокостюмы, респираторы разового пользования ШБ-1 «Лепесток» для защиты от радиоактивных аэрозолей).

    Работы с радиоактивными веществами производятся в специальных камерах, оборудованных манипуляторами. Для хранения и транспортировки твердых и жидких радиоактивных отходов применяются специальные герметичные контейнеры.

    Лабораторные помещения требуется обеспечить надежно действующей приточно-вытяжной вентиляцией. Периодически должна производиться уборка и дезактивация лабораторий. При применении радиоактивных веществ важно обеспечить постоянный дозиметрический контроль, который осуществляется при помощи специальных дозиметров (рисунок 1).

    Карманный дозиметр:
    1 - янтарная втулка электростатической машинки;
    2 - янтарная втулка;
    3 - пробковый цилиндр;
    4 - корпус;
    5 - ионизационная камера;
    6 - линзы;
    7 - металлическая скоба;
    8-контактная пластинка;
    9-кнопка

    При расчетном определении безопасных условий работы с радиоактивными веществами пользуются следующими формулами:

    Из приведенных формул видно, что доза облучения прямо пропорциональна активности источника, времени облучения и обратно пропорциональна квадрату расстояния от него.

    Учитывая большую опасность радиоактивных веществ, их применение можно допускать только в необходимых случаях.

    Мероприятия по защите от электромагнитных полей, создаваемых установками высокой частоты

    В металлургии токи высокой частоты применяются, например, для плавления металла в индукционных электропечах, для нагревания концов рельсов при их термообработке и других целей.

    Как известно, в металле, внесенном в переменное магнитное поле, возникают вихревые токи, вызывающие нагревание металла. Образовавшееся электромагнитное поле распространяется в окружающем пространстве со скоростью, приближающейся к скорости света.

    Электромагнитное поле частично поглощается тканями организма, что отрицательно влияет на состояние здоровья человека. Особенно отрицательно электромагнитное поле воздействует на центральную нервную систему и на глаза работающих, находящихся вблизи от действующих высокочастотных установок.

    Предельно допустимая величина интенсивности облучения энергией сверхвысоких частот в рабочей зоне за полный рабочий день не должна превышать 0,01 мвт/см 2 соответственно при облучении до 2 ч - 0,1 мвт/см 2 и при облучении до 15-20 мин - не более 1 мвт/см 2 Работающие должны обязательно надевать защитные очки.

    Основным мероприятием техники безопасности при обслуживании установок высокой частоты является их экранирование. Экраны должны выполняться из тонколистового (толщиной не менее 0,5 мм) металла с большой электропроводностью. Защитные экраны должны быть тщательно заземлены.

    Для достижения надежной защиты обслуживающего персонала экраны следует устраивать в виде ряда ступеней (экранировать первичные и рабочие контуры агрегатов и, кроме того, дополнительно защищать экраном всю установку).

    Наряду с экранированием следует ограничивать время пребывания работающих вблизи установок и необходимо размещать приборы управления на значительном расстоянии от установок.

    Высокочастотные установки необходимо оборудовать световой сигнализацией, указывающей о готовности установки к включению (зеленая лампа) и извещающей о включении установки (красная лампа).

    Рабочие инструменты для загрузки или перемешивания жидкого металла необходимо снабжать рукоятками, покрытыми электроизоляцией. Работающие обязаны пользоваться специальными предохранительными очками.

    Контроль за напряженностью электромагнитных полей в рабочей зоне обслуживания установок следует периодически осуществлять специальными приборами (ИНП-ЛИОТ).

    В целях электробезопасности при эксплуатации установок высокой частоты необходимо строго соблюдать правила техники безопасности при обслуживании промышленных электроустановок.

    Излучения в конвертерном цехе

    Вредные производственные факторы в конвертерном цехе

    Микроклимат рабочих помещений конвертерного цеха характеризуется обычными для горячих цехов вредными производственными факторами - значительными выделениями избыточного тепла, пыли и газов, резко контрастным освещением. Они неблагоприятно действуют на организм человека, снижают его работоспособность, приводят к профессиональным заболеваниям.

    Наиболее отличительная особенность физической среды - непрерывное поступление явного тепла. Первичными его источниками в цехе являются жидкий металл, шлак и высоконагретые газы. Они дают главным образом инфракрасное излучение (тепловые лучи), которые нагревают окружающие поверхности. Горячие кожухи конвертеров, миксеров, чугуновозных и сталеразливочных ковшей, шлаковых чаш, нагретые стенки изложниц, поддоны, горячий скрап, шлаковые корки, бой огнеупоров служат вторичными источниками тепла. От них нагревается воздух помещения. Для инфракрасных лучей сухой воздух прозрачен. Перемещение более нагретых масс воздуха к менее нагретым создает конвективный перенос тепла (конвекция - циркуляция потоков воздуха, вызванная разностью их температур).

    Вид теплоизлучения определяется температурой поверхности физического тела. Нагретые до 600°С поверхности дают интенсивное инфракрасное излучение. При 700-750°С появляется видимое излучение. При температуре расплавленного железа (1500°С и выше) вместе с инфракрасным и видимым в спектре наблюдается и ультрафиолетовое излучение - из горловины конвертера с металлом, от струи чугуна из миксера, металла и шлака при выпуске плавки из конвертера. Вблизи первичных источников значительное количество тепла выделяется, кроме того, и конвекцией. По санитарным нормам к горячим относятся те производства, где интенсивность тепловыделения в воздух превышает 84 кДж/(м 3 ·ч). В конвертерном цехе тепла выделяется во много раз больше. Например, в стрипперном отделении, где раздевают горячие слитки с температурой поверхности 900-930°С, интенсивность тепловыделений доходит до 800-1000 кДж/(м 3 ·ч).

    Воздействие лучистой энергий на человека оценивается интенсивностью инфракрасного облучения. Оптимальный уровень нагрева принимается 1,25 МДж/(м 3 ·ч). Облучение такой интенсивности человек переносит легко. Более сильное тепловыделение ухудшает микроклимат участка и неблагоприятно воздействует на работающих: повышается импульсивность кожного анализатора, усиливается напряженность терморегуляции организма под контролем центральной нервной системы, сердечно-сосудистая и дыхательная системы мобилизуются к более высоким нагрузкам. Возникают дискомфортные теплоощущения. Работоспособность в таких условиях падает.

    Рабочие горячих профессий подвергаются весьма интенсивному облучению, достигающему 38-50 МДж/(м 2 ·ч). Задача снижения избыточного тепла в производственных помещениях решается комплексно, посредством ряда технических и санитарно-гигиенических мер: уменьшением инфракрасного излучения первичными источниками; вентиляцией помещений; применением защитных экранов, теплоизоляции, тепловоздушных завес; созданием физических условий, способствующих облегчению терморегуляции организма и снятию перегрева тела. Например, футеровка конвертера и миксера служит также теплоизоляцией и герметизацией рабочего пространства агрегата. Теплонесущие устройства над конвертером охлаждаются водой, циркулирующей под напором в полых объемах конструкций. В нижнюю подъемную часть газохода вода подается при температуре 20°С и отводится нагретой до 45-50°С в бассейн-отстойник. На охлаждение подъемной и экранированной частей газохода расходуется 1500-2000 м 3 /ч при 0,3-0,4 МПа, а кислородной фурмы 120 м 3 /ч при 1,2- 1,4 МПа.

    Проем горловины при повалке конвертера заслоняют (экранируют) футерованным щитом с прорезью для прохода ложки с пробой и термопары. Рабочие помещения, кабинеты, площадки, переходные мостики защищают от перегрева, применяя теплоизоляционную обшивку стен и полов.

    Защита от тепловых воздействий в конвертерном цехе

    Для того чтобы защитить в конвертерном цехе людей от тепловых воздействий, удаляют рабочие места из зон интенсивного инфракрасного излучения и конвективного тепла, сооружают технические устройства для уменьшения теплорадиации и используют средства индивидуальной защиты работающих. В этом направлении совершенствуется и технология. Освоена, например, бесстопорная разливка стали с шиберными затворами.

    Отдалить человека от зоны облучения позволяет механизация и автоматизация производственных процессов, создание дистанционного управления агрегатами, применение телевидения для наблюдения за ходом работ. В частности, из опасной зоны выведены пульты управления конвертером (дистрибуторная) и сталевозной тележкой, экспресс-лаборатория. Вблизи теплоисточника защитное действие оказывает экранирование.

    Широко применяются установки искусственного микроклимата - кондиционеры, которые монтируют в дистрибуторных, диспетчерских, конторских и других рабочих помещениях, в кабинах машинистов электрических кранов, в комнатах кратковременного отдыха.

    Рабочих конвертерного цеха обеспечивают специальными одеждой, обувью и другими средствами индивидуальной защиты. Спецодежда защищает человека от
    лучистого и конвективного тепла, брызг металла и шлака, пыли и загрязняющих веществ. Сталевары, миксеровые, разливщики, огнеупорщики (каменщики) получают суконные костюмы и кожаные ботинки (ГОСТ 12.4.045-78; 12.4.032-77).

    Костюмы шьют из грубошерстного, плотного и теплоизолирующего сукна, которое предохраняет тело от термических ожогов и механических поражений осколками.

    Тонкий слой воздуха, удерживаемый грубым ворсом, защищает от теплооблучения.

    К средствам теплозащиты относятся также каски (текстолитовые или фибровые) с подстилающим вкладышем из шерстяной ткани - подшлемником; наголовные щитки и маски из прочного органического стекла, мелкоячеистой металлической сетки (3-4 мм); очкисветофильтры из синего стекла (ГО СТ 12.4.013-75); очки с металлизированными стеклами и боковыми сегментами.

    Большое значение для улучшения условий труда имеет рациональная организация работы в цехе - своевременный вывоз из главного здания составов с залитыми слитками, заполненных шлаковозов, железнодорожных платформ, груженных горячим скрапом, шлаком, боем кирпича.

    Терморегуляция (теплооблучение) организма в конвертерном цехе

    Терморегуляция - физиологический механизм приспособления организма к тепловым изменениям в микросреде путем теплообмена для поддержания постоянной температуры тела в пределах 36-37°С. Теплопоглощение и теплоотдача при этом уравниваются.

    Источником теплооблучения человека служат, как указывалось, инфракрасное излучение и нагретый воздух. Тепло в организме образуется вследствие обмена веществ. Отдача тепла происходит главным образом через кожу излучением, конвекцией и испарением пота. Температура поверхности кожи составляет 33-34°С.

    Интенсивность теплоотдачи тела излучением определяемся разностью температур кожи и окружающих предметов, а конвекцией - разностью температур кожи й окружающего воздуха.

    Физическое состояние микросреды характеризуют метеорологические факторы - температура, относительная влажность и скорость движения воздуха. Согласно санитарным нормам проектирования промышленных предприятий (СН 245-71) и ГО СТ 12.1.005-76 в горячих цехах на постоянных рабочих местах и работах средней тяжести в холодный и переходный периоды года при температуре наружного воздуха ниже + 10°С оптимальными считаются: температура воздуха + 1 7 - 19°С, относительная влажность - 60-30%, скорость движения воздуха - не более 0,3 м/с; допустимыми - соответственно 16-22°С; до 75% и не более 0,5 м/с.

    В теплый период года при температуре наружного воздуха более +10°С оптимальные значения ее, относительной влажности и скорости движения воздуха составляют соответственно 20-23°С (допустимая не более чем па 5°С выше средней температуры наружного воздуха в 13 ч самого жаркого месяца, но не более 28°С), 60-30% (при 28°С - не более 55%, при 27°С - 60%, при 26°С - 65%, при 25°С - 70%, при 24°С и ниже - не более 75%) и 0,2-0,5 м/с (допустимая 0,5- 1,0 м/с). Кроме того, указываются предельно допустимые концентрации (ПДК) вредных веществ. Они предусматривают в воздухе рабочей зоны и в зоне дыхания такие концентрации, которые при ежедневной (кроме выходных дней) работе в течение 8 ч или другой продолжительности, но не более 41ч в неделю на протяжении всего трудового стажа не могут вызвать заболеваний или отклонений здоровья.

    Оптимальные микроклиматические условия вызывают у человека ощущение теплового комфорта, не требуют напряжения терморегуляции организма. Работоспособность людей сохраняется в течение всей смены.

    Рабочей зоной считается пространство высотой до 2 м над уровнем пола или площадки, на которых находятся места постоянного или временного пребывания людей.

    Зоной дыхания - пространство в радиусе до 50 см от лица.

    В конвертерном цехе в местах, где температура воздуха превышает 30°С, фактор перепада температур кожи и среды теряет свое регулирующее значение. Терморегуляция организма происходит в основном путем испарения пота, что существенно повышает нагрузки на сердечно-сосудистую и дыхательную системы. В таких условиях человек выделяет за смену 5 - 6 л и больше влаги. Возникает ощущение дискомфорта - самочувствие ухудшается. Наступает скорое утомление.

    Для улучшения условий труда применяют санитарно-гигиенические меры: воздушный и водовоздушный душ, гидропроцедуры, радиационное охлаждение, рациональный питьевой режим. Воздушный душ (стационарный или передвижной) ускоряет подвижность воздуха на участке, что усиливает теплоотдачу организма конвекцией. В жаркое время воздух увлажняют, распыляя струю воды форсунками. При испарении капель воды, попавших на одежду и открытые части тела, охлаждается кожа. Зимой приточный воздух душа предварительно подогревают в калорифере.

    Водовоздушный душ нецелесообразно применять в чрезмерно запыленных помещениях. Там он не столько ослабляет теплооблучение, сколько разносит пыль по цеху.

    Гидропроцедуры - водяной душ или полудуш, устраиваемые вблизи рабочего места,- освежают человека, снимая перегрев тела. В помещениях пульта управления, в конторке мастера, в комнате кратковременного отдыха монтируют настенные панели или разводку труб (регистры), через которые пропускают холодную воду. Это радиационное охлаждение - эффективное средство улучшения условий труда в горячем цехе.

    Рациональный питьевой режим рассчитан на сохранение оптимального водно-солевого баланса организма, что особенно важно в жаркое время, когда терморегуляция протекает главным образом за счет потовыделения. Обезвоживание организма приводит к повышению вязкости крови и ухудшает кровообращение, замедляет снабжение тканей кислородом, повышает температуру кожи,вызывает мышечную слабость, головокружение и может завершиться тепловым ударом.

    Для восполнения потери организмом солей с потом (большей частью - хлоридов) питьевую воду подсаливают (до 3-5 г поваренной соли на литр воды). Летом ее охлаждают до 14- 16°С и газируют углекислотой для придания приятного вкуса. Употребляют для питья и пресную охлажденную воду. Хорошо утоляет жажду белково-витаминный тонизирующий напиток, имеющий вкус хлебного кваса. Полезен и горячий чай.



    Поделиться