Выбросы в атмосферу загрязняющих веществ. Чистый воздух

В рамках соглашений о взаимодействии, подписанных министерством с предприятиями Калужской области проводятся мероприятия-мониторинг по контролю за предельно допустимыми выбросами. Например, Агрегатный завод вложит миллион рублей в дальнейшее развитие проекта «Завод-парк». В рамках данного проекта планируется высадить несколько сот деревьев и кустарников, организовать аллеи и пешеходные дорожки, выделить зоны для отдыха и занятий спортом. В свою очередь, Чугунолитейное предприятие уже инвестировало в модернизацию вытяжной вентиляции 1450 тыс. рублей

Одной из главных задач в Курской области стало снижение выбросов вредных загрязняющих веществ в атмосферу. Для этого проведена работа по замене автобусов с дизельным двигателем на автобусы, работающие на газомоторном топливе. Внедрено односторонне движение, а также строительство транспортных узлов и развязок, в результате которых за последние 3 года уменьшен объем выбросов от передвижных источников на 11 тыс. тонн.

Управлением экологии Липецкой области была введена акция «День отказа от использования личного автотранспорта», которая проводится в середине последнего месяца каждого квартала. Хочется отметить, что данное мероприятие не только формирует экологическую культуру населения, но и помогает повысить чистоту атмосферного воздуха в области.

Москва также уделяет большое внимание вопросам загрязнения воздуха, так, например, с января 2016 года введены требования по качеству моторного топлива на уровне Евро-5. А уже с 1 января 2017 года стали действовать ограничения для грузовых автомобилей и автобусов по экологическим классам при въезде в пределы МКАД и на МКАД. Данные экологического мониторинга в городе показывают, что, несмотря на рост количества зарегистрированных в городе автомобилей, в результате перечисленных мер удалось не только сдерживать рост загрязнений атмосферного воздуха, но и снижать по ряду показателей. Также в Москве на всех объектах первой категории по негативному воздействию на окружающую среду созданы и функционируют автоматизированные системы локального экологического мониторинга промышленных выбросов — это ТЭЦ, мусоросжигательные заводы, нефтеперерабатывающий завод, котельные. Системы начали создаваться на московских предприятиях с 2007 года, в настоящее время Системы функционируют на 55 объектах.

В Тамбовской области была проведена операция «Чистый воздух», которая направлена на профилактику фактов превышения предельно допустимой концентрации вредных выбросов в атмосферу от передвижных источников. Особое внимание при проведении данного мероприятия уделялось пассажирскому автомобильному транспорту. Поэтому экологами с помощью измерителей содержания загрязняющих веществ в выхлопных газах ООО «Контольавтоцентр» было проверено 8 автобусов, в 4 случаях были выявлены нарушения природоохранного законодательства. Владельцам автобусов, находящихся в технически неудовлетворительном состоянии, пришлось не только выплатить штраф, но и принять меры к ремонту транспорта.

СЗФО: Улучшение атмосферы

По данным Калининградского центра по гидрометеорологии и мониторингу окружающей среды в Калининграде за 2016 год наблюдается тенденция по улучшению качества атмосферного воздуха и снижению вредных веществ в атмосфере (по диоксиду азота и взвешенным веществам). Впервые за много лет степень загрязненности атмосферного воздуха в городе Калининграде характеризовалась как низкая. В центральной части Калининграда на базе программно-аппаратных средств АПК «Безопасный город» запущена рабочая версия системы, которая осуществляет мониторинг выбросов парниковых газов. Система помогает оценивать экологический эффект от принимаемых мер транспортной политики города.

Продолжается газификация населенных пунктов региона, переводятся на газ угольные котельные. Всего с 2016 по 2020 годы на газ планируется перевести 86 котельных, в 2017 году — 35 котельных. Это мероприятие позволит сократить вредные выбросы в атмосферу более чем на 3 тысячи тонн.

В июле 2017 года по решению суда была приостановлена деятельность производства по плавке металлов ООО «Браво БВР», несколько лет отравлявшего воздух в поселке Прибрежном. Рассмотрение вопроса о приостановке деятельности завода, расположенного в нескольких десятках метров от жилых домов и социальных объектов, было инициировано губернатором Калининградской области Антоном Алихановым на основании многочисленных жалоб местных жителей. По его поручению региональное Минприроды во взаимодействии с Калининградской межрайонной природоохранной прокуратурой усилили работу по привлечению к ответственности промышленных предприятий, загрязняющих атмосферный воздух в Прибрежном.

Наблюдения за состоянием атмосферного воздуха ведутся Псковским центром по гидрометеорологии и мониторингу окружающей среды — филиалом федерального государственного бюджетного учреждения «Северо-Западное управление по гидрометеорологии и мониторингу окружающей среды» на двух стационарных постах в городе Пскове и в городе Великие Луки.

Уровень загрязнения атмосферного воздуха в целом по городу Пскову невысокий, в городе Великие Луки степень загрязнения атмосферы оценивается как низкая.

В настоящее время Государственным комитетом Псковской области по делам строительства и жилищно-коммунального хозяйства ведется разработка региональной программы по обращению с отходами. В указанную региональную программу планируются включить следующие мероприятия: строительство, реконструкция объектов размещения отходов; строительство объектов по переработке и утилизации отходов; ликвидация несанкционированных свалок.

ЮФО: Электричество вместо бензина

В настоящее время в целях улучшения качества атмосферного воздуха на территории муниципальных образований Краснодарского края реализуются мероприятия, направленные на использование электрического транспорта (трамвай, троллейбус), перевод автомобилей на сжиженный газ и реализация мер по повышению привлекательности для населения общественного пассажирского транспорта, обеспечение его приоритетного движения. Например, ООО «Электо» планирует создание сети быстрых электрозарядных станций, такси на электромобилях, а также сервиса аренды электромобилей (каршеринг).

Также в целях снижения вредных выбросов в атмосферный воздух в 2017 году на ООО «ЕвроХим-Белореченские Минудобрения» (город Белореченск) проведена реконструкция склада апатитового концентрата. Модернизирована система газоочистки электросталеплавильного цеха для ООО «Абинский ЭлектроМеталлургический завод».

СКФО: Передвижные посты наблюдения

На территории Чеченской Республики в настоящее время не высокий уровень загрязнения атмосферы, в связи с отсутствием крупных промышленных источников загрязнения. Вместе с тем, в соответствии с Государственной программой «Охрана окружающей среды и развитие лесного хозяйства Чеченской Республики» планируется внедрение программных продуктов и организация системы передвижных постов наблюдения по системному учету выбросов в атмосферный воздух за счет средств республиканского бюджета в размере три миллиона рублей.

ПФО: Солнечная энергия

В Оренбургской области реализуются мероприятия, направленные на развитие альтернативной энергетики: строительство солнечных электростанций, суммарная мощность которых на территории области должна достигнуть 100 МВт, а также установка ветроэнергетических и биогазовых установок. Немаловажными в этом направлении являются мероприятия по переводу городского общественного автомобильного транспорта и коммунальной техники на использование газомоторного топлива, газификации населенных пунктов, что позволяет значительно сокращать выбросы загрязняющих веществ в атмосферный воздух.

Также на территории области проводятся мероприятия по снижению вредных выбросов в атмосферу. Например, были построены установки по утилизации и сжигании попутного нефтяного газа (ПНГ) (ООО «Бугурусланнефть», ПАО «Оренбургнефть»). ООО «ММСК» произвели техническое перевооружение цеха серной кислоты.

В республике Марий Эл промышленными предприятиями с целью снижения объемов выбросов загрязняющих веществ в атмосферный воздух осуществляется перевод оборудования от использования традиционных видов топлива на газообразное топливо, приобретение газоочистных сооружений, а также реконструкция сооружений газоочистки. Так, на ОАО «Марийский целлюлозно-бумажный комбинат» для очистки поступающих в атмосферный воздух выбросов осуществляется установка газоочистных сооружений; в границах промышленной площадки предприятия будут посажены более 1000 саженцев сосны.

УФО: Защита от пыли

В Курганской области ведётся запланированная установка (ремонт) пылегазоочистительных установок на ОАО «НПО «Курганприбор», ЗАО «Катайский насосный завод», ООО «Зауральский кузнечно-литейный завод», АО «Кургандормаш». Также, Планируется перевод четырех котельных с твердого топлива на природный газ в Шатровском районе.

В Ханты-Мансийском автономном округе — Югре благодаря реализации нефтяными компаниями долгосрочных программ по утилизации попутного нефтяного газа (строительство газопроводов, компрессорных станций) наблюдается снижение объемов выбросов загрязняющих веществ в атмосферный воздух на 1 млн. тонн.

Необходимо отметить, что большинство крупных нефтяных компаний не только достигли требований национального стандарта Российской Федерации по 95-процентному уровню утилизации, но и превысили его. Это связано с развитием «малой» энергетики, представленной газотурбинными и газопоршневыми электростанциями, которые обеспечивают электроэнергией и теплом предприятия нефтегазового комплекса.

СФО: Централизованное теплоснабжение

На территории Забайкальского края проведена реконструкция существующих золоуловителей на котлах Читинской ТЭЦ-1, что помогло снизить годовой выброс твердых веществ в атмосферный воздух на 146 тонн золы в год и на 16 тонн сажи.

Также были закрыты две котельные в городе, находящиеся в муниципальном управлении. Суммарный экологический эффект от закрытия котельных и переключения на централизованное теплоснабжение, выраженный в годовом снижении вредных выбросов, поступающих в атмосферу Читы, составит 67 тонн в год для двух объектов.

ДФО: Газ как топливо

На территории Сахалина реализуется программа «Развитие промышленности в Сахалинской области на период до 2020 года». Ее основной цель — создание газозаправочной инфраструктуры и переоборудование автотранспорта и сельскохозяйственной техники, использующих природный газ в качестве моторного топлива.

Содержание раздела

8.1.1. С целью снижения образования NО x в приосевой зоне горелочных устройств в котлах ТГМП-204, отапливаемых жидким топливом, предлагается модернизировать горелки . Более эффективным по мнению авторов при сжигании жидкого топлива в силу стадийности его подготовки, является ввод газов рециркуляции через отдельный канал . При этом подбирается такое соотношение скоростей воздуха и газов, при котором газы не балластируют прикорневую область горения, а достигают активной зоны горения и тормозят образование NО x в этой зоне.

На рис. 8.1 приведена схема модернизированной горелки котла ТГМП-204. Горелка состояла из двух каналов подачи воздуха (центрального и периферийного), снабженных тангенциальными регистрами.

Рис. 8.1. Схема модернизированной горелки для сжигания жидкого топлива в топке котла ТГМП-204

Скорость истечения воздуха на выходе из каналов соответственно 60 и 70 м/с. По периферии горелки расположен канал ввода газов рециркуляции со скоростью 26 м/с. В центре горелки установлена мазутная форсунка с углом раскрытия топливного факела 85°. Выход канала газов рециркуляции перекрыт кольцом, в котором просверлены отверстия диаметром 60 мм, обеспечивающие истечение газов рециркуляции со скоростью ∼50 м/с (вместо 26 м/с). На рисунке видно, ось струи газов рециркуляции проходит через фронт пламени, и их дальнобойность позволяет достигнуть предполагаемой зоны основного образования оксидов азота. При этом основная часть газов рециркуляции не попадает в корень факела, что положительно сказывается на снижении образования механического недожога q 4 . Модернизация горелок котлов ТГМП-204 позволила сократить содержание NО x в отходящих дымовых газах на 30%.

8.1.2. На котле ТГМ-84Б с целью подавления оксидов азота внедрен дозированный впрыск воды в зону горения . При водотопливном отношении q < 10% это снижение достигает 150÷170мг/м 3 , а при водотопливном отношении q ∼ 8% с работой на пониженных избытках воздуха (α = 1,04÷1,06) концентрация NО x снижается на 200–220 мг/м 3 .

В зависимости от конкретных условий для подавления оксидов может использоваться техническая вода, основной конденсат или сетевая вода.

8.1.3. В топках с фронтальной компоновкой пылеугольных горелок для снижения концентраций NО x в уходящих газах при сжигании нешлакующегося топлива без содержания S считают целесообразным организовать ступенчатый ввод вторичных (третичных) потоков воздуха , направляя их в центральную область топки между концентрированными потоками реагентов.

8.1.4. Для одновременного улавливания оксидов N и S с эффективностью до 90% в предлагают электронно-лучевую обработку дымовых газов .

Этот сухой метод очистки позволяет решить проблемы образования отходов, удаления шламов, повторного нагрева газов. Кроме того, при такой обработке получается порошкообразная смесь побочных продуктов – удобрений (NH 4) 2 SO 2 и NH 4 NO 3 .

Утверждается , что метод электронно-лучевой обработки дымовых газов дешевле мокрых известняковых (скрубберного и каталитического) методов.

8.1.5. В для снижения выхода NО x не менее, чем на 60–70%, предлагается ступенчатое сжигание топлива с вводом азотосодержащих веществ в восстановительную зону горения . Утверждается, что присутствие значительного количества азотосодержащих радикалов RNi в продуктах сгорания в области высоких температур при α < 1обеспечивает эффективное восстановление NО x , образовавшихся на начальной стадии факела, до молекулярного азота. В качестве восстановителя применяются: аммиак – NH 3 , аммиачная вода – NH 4 OH, мочевина – (NH 2) 2 CO, циануровая кислота – (HOCN) 3 .

8.1.6. Модернизация котла, отапливаемого природным газом, БКЗ-420-140 НГМ-4 путем оснащения его дутьем воздуха над горелками верхнего яруса привело к резкому снижению содержания NО x в дымовых газах .

8.1.7. На котлах с жидким шлакоудалением ТПП-312 (паропроизводительность 950 т/ч, параметры пара: 25 МПа, 545 °С) с целью снижения NО x внедрено трехступенчатое сжигание топлива . Внедрение осуществлялось путем установки дополнительных прямоточных газовых горелок и установки сопл третичного дутья (рис. 8.2).

Рис. 8.2. Схема трехступенчатого сжигания на котле ТПП-312: 1 – основные грелки; 2 – дополнительные горелки и газы рециркуляции; 3 – сопла третичного воздуха; 4 – верхние сопла рециркуляции

Дополнительные горелки были установлены встречно на фронтовом и заднем экранах, а сопла третичного дутья были размещены выше дополнительных горелок. Для обеспечения требуемой по условию шлакования ширм температуры газов в верхней части топки был выполнен аэродинамический выступ.

В результате модернизации выбросы NО x сократились в два раза. Надежность и экономичность работы котла при этом не снизились.

8.1.8. При сжигании углей различных видов в основной горелке и подаче природного газа или жидкого топлива во вторую ступень , позволили получить качественные характеристики процесса:

  • - ввод вторичного топлива следует осуществлять за зоной активного горения по потоку газов;
  • - количество топлива, подаваемого во вторую ступень, должно составлять около 20–25% по теплу;
  • - коэффициент избытка воздуха – á в агенте, транспортирующем топливо-восстановитель, не должен превышать 0,35;
  • - в качестве топлива-восстановителя предпочтительней природный газ.

Соблюдение при модернизациях указанных качественных характеристик обеспечивает снижение концентрации оксидов азота в 3 и более раз .

Там же утверждается, что высокотемпературный (до 600–800 °С) подогрев топливной пыли позволяет снизить в 3–5 раз образование «топливных» оксидов азота в пылеугольном факеле.

8.1.9. Результат от внедрения комплекса различных методов подавления NО x применительно к котлу ТГМП-114 (а) и котлу ТГМ-96Б, отапливаемых мазутом, приведен на рис. 8.3 .

Рис. 8.3. Применение комплекса технологических методов для подавления NО x на газомазутных котлах при О 2 = 6%: I – исходный вариант; II – малотоксичные горелки; III – горелки + рециркуляция; IV – горелки + ступенчатое сжигание + рециркуляция; V – ступенчатое сжигание; VI – ступенчатое сжигание + рециркуляция

8.1.10. Замена инжекционных горелок (ИГК) на вихревые газомазутные горелки дутьевого (напорного) типа у котлов паропроизводительностью до 10 т/ч («ДКВ», «ДКВР», «ДЕ», «Универсал» и др.) снижает содержание NО x в дымовых газах ∼ в 1,5–1,6 раза .

8.1.11. Модернизация горелок на котле ТГМ-84, отапливаемого природным газом, позволила снизить содержание NО x в уходящих дымовых газах н 30% и довести концентрацию NО x до 110 мг/м 3 при á = 1,4 .

Рис. 8.4. Газомазутная горелка котла ТГМ-84: а – проектная, б – модернизированная

До модернизации эксплуатировались горелки конструкции ЦКТИ (рис. 8.4, а ): газы рециркуляции в горелки подавались по периферии улиточного короба. В модернизированных горелках (рис. 8.4, б ) газы рециркуляции подаются по всему радиусу улитки.

8.1.12. Предварительная (вне топки) термическая подготовка угля – нагрев угля в бескислородной среде до температуры 650–850 °С способствует развитию процесса пиролиза угольных частиц с разрушением термически неустойчивых азотосодержащих соединений и переходом выделяющегося атомарного азота в молекулярный инертный азот.

Разработанная «Уралтехэнерго» встроенная система подогрева пыли (ВСП) полностью обеспечивает предварительную термическую подготовку угля . ВСП может быть использована в пылеугольных грелках различного типа – вихревых, прямоточных, плоскофакельных – при подаче в систему высококонцентрированной аэросмеси. Конструктивно ВСП состоит из двух основных разъемных блоков – камеры сжигания вспомогательного топлива и рабочего канала (рис. 8.5).

Рис. 8.5. Конструктивная схема вихревой пылегазовой горелки со встроенной системой подогрева угольной пыли (ВСП): 1 – основная горелка; 2 – камера сжигания вспомогательного топлива; 3 – рабочий канал; 4 – вспомогательная газовая горелка; 5 – патрубок подачи высококонцентрированной аэросмеси; 6 – запальник

Камера сжигания служит для воспламенения топливовоздушной смеси и формирования факела в ограниченном объеме.

В рабочем канале происходит: догорание вспомогательного топлива; смешение угольной пыли с высокотемпературными продуктами сгорания вспомогательного топлива; подогрев угля и выделение летучих.

Опыт промышленной эксплуатации ВСП позволил существенно улучшить выгорание топлива – содержание горючих в уносе составляет 5–6%. Концентрация оксидов азота в дымовых газах снижается до 60–70% от исходного уровня.

8.1.13. Низкоэмиссионная вихревая технология – НВТ или образование вихревого низкотемпературного процесса (НВТ) происходит в результате взаимодействия встречно-смешенных струй, вытекающих из наклоненной вниз под углом á горелки, и воздушного сопла нижнего дутья, установленного внизу топки по всей ее ширине и направленного вдоль ската холодной воронки под горелки (рис. 8.6).

Рис. 8.6. Аэродинамическая схема низкотемпературного вихревого процесса

Наклон горелок позволяет направить значительную массу топлива в нижнюю часть топки, где наиболее крупные фракции при развороте струи под действием инерции и собственной массы сепарируются из потока, вовлекаются нижним дутьем в многократную циркуляцию и сгорают в низкотемпературном вихре, а мелкие сгорают в прямоточной части факела .

Подача практически всего вторичного воздуха только через верхние сопла обеспечивает на начальном участке нижних ярусов избытки воздуха, равные 0,3–0,5. Поэтому горение в верхней части топки ведется в режиме дожигания, а в нижней – в полувосстановительной атмосфере. Снижение максимальной температуры в топке и на выходе из нее исключает шлакование экранов и пароперегревателя.

Внедрение НВТ путем модернизации котлов ПК-10, отапливаемых твердым топливом, позволило снизить в отходящих газах содержание:

  • - NО x (при О 2 = 6% и при нормальных условиях) с 900–860 мг/м 3 до 330–415 мг/м 3 ;
  • - SO 2 на 25–35%.

В объем модернизации (рис. 8.7) входят:

  • реконструкция горелок, связанная с установкой дополнительных насадок на сопла аэросмеси и вторичного воздуха;
  • устройство ввода нижнего дутья;
  • размещение воздуховодов с регулирующими органами (шиберами);
  • ввод дробленки CaCO 3 (фракция 0,035 м) посредством дозатора на угольную ленту существующей топливоподготовки.

Рис. 8.7. Схема модернизации котлов ПК-10

8.1.14. При реализации схемы двухступенчатого сжигания пылеугольного топлива на котлах с фронтальным расположением горелок или открытыми амбразурами (например, на котлах БКЗ-75-39 ФБ) в предлагают определять по следующим формулам.

Оптимальную область ввода третичного воздуха в соответствии с :

H = 0,5(D г + h 3) + 1,5(V daf /10) 0,5 , м,

где Н – расстояние между осями горелок и воздушных сопл, м; D г – диаметр горелки, м; h 3 – высота выходного сечения сопла, м; V daf – выход летучих на горючую массу, %.

Долю третичного воздуха по формуле:

∆α 3 = α″ т – (α г + ∆α т),

где α т – коэффициент избытка воздуха на выходе из топки, ∆α т – присосы воздуха в топочную камеру, α г – коэффициент избытка воздуха в горелках.

Эффективность ступенчатого сжигания в соответствии с :

η Nox = 340 (H 0,5 – 3∆α3) × , %;

Увеличение температуры газов на выходе из топки – ∆Θ″ т в соответствии с :

∆Θ″ т = 35Н(1,1 – α г) 0,5 , °С;

Потери тепла с механическим недожогом – ∆q 4 в соответствии с :

∆q 4 = 30*H /V daf *(1,1 – α г) 2 , %.

8.1.15. Количество «термических NO x », образующихся при горении топлива, зависит от уровня максимальной температуры в ядре горения, а при горении природного газа образуются еще и «быстрые NO x », количество которых практически не зависит от температуры факела. Считают , что единственным средством для снижения «быстрых» – это полное предварительное смешение топлива с воздухом .

Фирмой Radiom Corporation (США) разработана горелка R-RMB TM . Эта горелка по данным подавляет образование как «термических» так и «быстрых» NO x . Принципиальная схема горелки приведена на рис. 8.8. Особенностью горелки является способность чрезвычайно быстрого смешения топлива с газовоздушной смесью. Достигается это в результате вода мельчайших струй природного газа в поток газовоздушной смеси в межлопаточном пространстве, обеспечивая тем самым высокую турбулентность потока.

Рис. 8.8. Схема работы горелки R-RMB TM: 1 – центральная форсунка для мазута; 2 – природный газ; 3 – воздух и газы рециркуляции; 4 – закручивающие лопатки (в промежутки лопаток подается природный газ); 5 – распыленный (дисперсный) мазут; 6 – смесь природного газа, воздуха и газов рециркуляции; 7 – стенка топочной камеры; 8 – наружная зона рециркуляции; 9 – внутренняя зона рециркуляции; 10 – участок интенсивного перемешивания топлива с газовоздушной смесью

Ориентировочно: длина факела ∼1,8 м; сопротивление по воздуху ∼1650 Па; сопротивление по природному газу ∼34–35 Па – соответствуют оптимальному режиму работы горелки.

Горелка R-RMB TM по данным обеспечивает снижение концентраций NO x в отходящих дымовых газах до уровня, который возможен при использовании метода селективного каталитического восстановления с использованием аммиака, т.е. до 9 ÷ 5 ppm (1 ppm = 1 см 3 /м 3). Отсутствие ступенчатой подачи топлива или воздуха при использовании горелок R-RMB TM позволяет избегать побочных отрицательных явлений. В частности в продуктах сгорания практически отсутствуют CO и углеводороды.

8.1.16. Эффективным методом снижения выбросов NO x является применение трехступенчатой схемы сжигания топлива (схема с восстановлением NO x или «Ребенинг») . Сущность схемы заключается в сжигании основной части топлива с избытком воздуха выше стехиометрического, например, α = 1,05 и организации после практически полного завершения выгорания топлива зоны восстановления. Зона восстановления образуется за счет подачи в нее топлива – восстановителя при α = 0,9–1,0. Третья ступень – зона дожигания организуется путем подачи в конец зоны восстановления избыточного третичного воздуха.

Сжигание высокореакционных углей с применением такой схемы позволяет снизить выбросы NO x на 40–60%.

Принципиально существует несколько подходов к решению проблемы ограничения вредных выбросов в атмосферу с дымовыми газами ТЭС:

Рассеивание вредных выбросов с помощью высотных дымовых труб на большой площади;

Непосредственное воздействие на механизм образований вредных примесей при горении топлив;

Очистка продуктов сгорания топлив от вредных примесей;

Удаление вредных компонентов из топлива до его сжигания. Специалисты в области теплоэнергетики должны уметь правильно выбирать оборудование и оптимальные режимы эксплуатации котлов, обеспечивающие снижение до минимума вредных выбросов в окружающую среду, в зависимости от вида сжигаемого топлива, рельефа местности и других факторов.

1.1. Высотные дымовые трубы

Хотя тепловые электростанции являются одним из наиболее крупных источников вредных выбросов в атмосферу, их участие в формировании общего фона загазованности в приземном слое воздуха отнюдь не находится в прямой зависимости от массы этих выбросов. Связано это с тем, что в отличие от других источников вредных выбросов (автотранспорта, промышленных предприятий) на ТЭС дымовые газы рассеиваются в атмосфере на высоте несколько сотен метров, благодаря чему достигают поверхности земли, разбавленные воздухом в сотни и тысячи раз. Основной задачей рассевания вредных веществ в атмосфере являются снижение их концентраций до такого уровня, когда они становятся безопасными для живой природы. Для этого на ТЭС используются дымовые трубы, высота которых (по мере укрупнения электростанций и ухудшения качества топлив) постоянно увеличивалась. В настоящее время используются трубы высотой 180, 250, 320 – 360 и 420 м.

Современные высотные дымовые трубы выполняются в виде моно­литных железобетонных стволов, выдерживающих высокие ветровые и весовые нагрузки. С целью предохранения железобетона от воздействия сернистых соединений, влаги и повышенной температуры дымовых газов в трубах выполняется защитная внутренняя оболочка из кислотоупорного кирпича. Высотные дымовые трубы являются дорогостоящим элементом ТЭС.

Концентрация токсичных веществ при увеличении высоты дымовых труб значительно падает в непосредственной близости от электростанции, с увеличением же расстояния относительное снижение концентрации уменьшатся. Для упрощенного определения распределения концентраций вредных примесей на уровне земли при их рассеивании с помощью дымовых труб используется следующая формула :

где М – количество выбросов; и – скорость ветра; Н – эффектив­ная высота трубы; k – коэффициент турбулентной диффузии; х – расстояние от трубы. Наибольшая величина приземной концентрации токсичных веществ С м устанавливается на расстоянии

(1.2)

и составляет

(1.3)

Однако в реальных условиях задача расчета концентрации токсичных примесей существенно осложняется в связи с необходимостью учиты­вать реальные гидрометеоусловия, неоднородность турбулентной структуры атмосферы, разность температур выбрасываемых газов и окружающего воздуха, условия выходя газов из устья трубы и их оседания на поверхности земли.

Высота дымовых труб ТЭС должна рассчитываться с учетом рас­сеяния токсичных примесей до норм ПДК. В табл.1.1 приведены рас­четные значения максимальной концентрации NО Х в приземном слое вблизи газомазутных ТЭС мощностью 3600 и 4800 МВт с дымовыми трубами 250 и 320 м при различных скоростях ветра. Данные расче­та показывают, что даже для трубы высотой 320 м в штиль содержа­ние NO Х в приземном слое может превышать ПДК. Еще большее пре­вышение ПДК будет наблюдаться при содержании в уходящих газах ТЭС, кроме NO Х, других вредных веществ, обладающих эффектом суммации.

Таблица 1.1

Расчетные концентрации NO X в приземном слое.

Высота труб, м

Скорость ветра, м/с

Концентрация NO X , мг/м 3

Поэтому высотные дымовые трубы не следует противопоставлять другим способам защиты окружающей среды. Пока будут существовать вредные выбросы (как следствие несовершенной технологии сжигания топлива), дымовые газы необходимо выбрасывать в верхние слои атмосферы, где их вредные компоненты будут обезвреживаться в ходе процессов естественного самоочищения воздушного океана. Высоту дымовых труб ТЭС следует выбирать после того, как использованы все возможности, связанные с уменьшением количества вредных выбросов ТЭС в атмосферу. Для этого существует специальная методика, учитывающая суммарное воздействие вредных веществ фоновую загазованность атмосферы городов и т.д. . С учетом этих факторов определяется предельная мощность тепловой электростанции по условиям защиты биосферы от воздействия вредных газообразных выбросов.

Промышленные отходы

Промышленные предприятия преобразуют почти все компоненты природы (воздух, воду, почву, растительный и животный мир). В биосферу ( , водоемы и почва) выбрасываются твердые промышленные отходы, опасные сточные воды, газы, аэрозоли, что ускоряет разрушение строительных материалов, резиновых, металлических, тканевых и других изделий и может стать причиной гибели растений и животных. Самый же большой ущерб эти сложные по химическому составу вещества наносят здоровью населения.

Очистка воздуха от вредных выбросов предприятий

Взвешенная в воздухе пыль адсорбирует ядовитые газы, образует плотный, токсичный туман (смог), который увеличивает количество осадков. Насыщенные сернистыми, азотистыми и другими веществами, эти осадки образуют агрессивные кислоты. По этой причине скорость коррозионного разрушения машин и оборудования во много раз увеличивается.

Защита атмосферы от вредных выбросов достигается рациональным размещением источников вредных выбросов по отношению к населенным зонам; рассеиванием вредных веществ в атмосфере для снижения концентраций в ее приземном слое, удалением вредных выделений от источника образования посредством местной или общеобменной вытяжной вентиляции; применением средств очистки воздуха от вредных веществ.

Рациональное размещение предусматривает максимально возможное удаление промышленных объектов — загрязнителей воздуха от населенных зон, создание вокруг них санитарно-защитных зон; учет рельефа местности и преобладающего направления ветра при размещении источников загрязнений и жилых зон по отношению друг к другу.

Для удаления вредных газовых примесей используются пылеуловители сухого и мокрого типа.

К пылеуловителям сухого типа относятся циклоны различных видов — одиночные, групповые, батарейные (рис. 1). Циклоны при
меняют при концентрациях пыли на входе до 400 г/м 3 , при температурах газов до 500°С.

Широкое применение в технике пылеулавливания нашли фильтры, которые обеспечивают высокую эффективность улавливания крупных и мелких частиц. В зависимости от типа фильтровального материала фильтры разделяются на тканевые, волокнистые и зернистые. Для очистки больших объемов газа применяют высокоэффективные электрофильтры.

Пылеуловители мокрого типа применяют для очистки высокотемпературных газов, улавливания пожаровзрывоопасных пылей и в тех случаях, когда наряду с улавливанием пыли требуется улавливать токсичные газовые примеси и пары. Аппараты мокрого типа называют скрубберами (рис. 2).

Для удаления из отходящих газов вредных газовых примесей применяют абсорбцию, хемосорбцию, адсорбцию, термическое дожигание, каталитическую нейтрализацию.

Абсорбция - растворение вредной газовой примеси сорбентом, как правило, водой. Метод хемосорбции заключается в том. что очищаемый газ орошают растворами реагентов, вступающих в химическую реакцию с вредными примесями с образованием нетоксичных, малолетучих или нерастворимых химических соединений. Адсорбция - улавливание поверхностью микропористого адсорбента (активированный уголь, силикагель, цеолиты) молекул вредных веществ. Термическое дожигание - окисление вредных веществ кислородом воздуха при высоких температурах (900-1200°С). Каталитическая нейтрализация достигается применением катализаторов — материалов, которые ускоряют протекание реакций или делают их возможными при значительно более низких температурах (250-400°С).

Рис. 1. Батарейный циклон

Рис. 2. Скруббер

При сильном и многокомпонентном загрязнении отходящих газов применяют сложные многоступенчатые системы
очистки, состоящие из последовательно установленных аппаратов различного типа.

Очистка воды от вредных выбросов и сбросов предприятий

Задача очистки гидросферы от вредных сбросов более сложна и масштабна, чем очистка атмосферы от вредных выбросов: разбавление и снижение концентраций вредных веществ в водоемах происходит хуже, так как водная среда более чувствительна к загрязнениям.

Защита гидросферы от вредных сбросов предусматривает применение следующих методов и средств: рациональное размещение источников сбросов и организация водозабора и водоотвода; разбавление вредных веществ в водоемах до допустимых концентраций с применением специально организованных и рассредоточенных выпусков: использование средств очистки стоков.

Методы очистки сточных вод разделяются на механические, физико-химические и биологические.

Механическая очистка сточных вод от взвешенных частиц осуществляется процеживанием, отстаиванием, обработкой в поле центробежных сил, фильтрованием, флотацией.

Процеживание применяют для удаления из сточной воды крупных и волокнистых включений. Отстаивание основано на свободном оседании (всплытии) примесей с плотностью большей (меньшей) плотности воды. Очистка сточных вод в поле центробежных сил реализуется в гидроциклонах, где под действием центробежной силы, возникающей во вращающемся потоке, происходит более интенсивное отделение взвешенных частиц от потока воды. Фильтрование используют для очистки сточных вод от мелкодисперсных примесей как на начальной, так и на конечной стадиях очистки. Флотация заключается в обволакивании частиц примесей мелкими пузырьками воздуха, подаваемого веточную воду, и поднятии их на поверхность, где образуется слой пены.

Физико-химические методы очистки применяют для удаления из сточной воды растворимых примесей (солей тяжелых металлов, цианидов, фторидов и др.), а в ряде случаев и для удаления взвесей. Как правило, физико-химическим методам предшествует стадия очистки от взвешенных веществ. Из физико-химических методов наиболее распространены электрофлотационные, коагуляционные, реагент- ные, ионообменные и др.

Электрофлотация осуществляется путем пропускания через сточную воду электрического тока, возникающего между парами электродов. В результате электролиза воды образуются пузырьки газа, прежде всего легкого водорода, а также кислорода, которые обволакивают частички взвесей и способствуют их быстрому всплытию на поверхность.

Коагуляция - это физико-химический процесс укрупнения мельчайших коллоидных и диспергированных частиц под действием сил молекулярного притяжения. В результате коагулирования устраняется мутность воды. Коагуляция осуществляется посредством перемешивания воды с коагулянтами (в качестве коагулянтов применяют содержащие алюминий вещества, хлорид железа, сульфат железа и др.) в камерах, откуда вода направляется в отстойники, где хлопья отделяются отстаиванием.

Сущность реагентногометода заключается в обработке сточных вод химическими веществами-реагентами, которые, вступая в химическую реакцию с растворенными токсичными примесями, образуют нетоксичные или нерастворимые соединения. Разновидностью реагентного метода является процесс нейтрализации сточных вод. Нейтрализация кислых сточных вод осуществляется добавлением растворимых в воде щелочных реагентов (оксида кальция, гидроксидов натрия, кальция, магния и др.); нейтрализация щелочных стоков — добавлением минеральных кислот — серной, соляной и др. Реагентная очистка осуществляется в емкостях, снабженных устройствами для перемешивания.

Ионообменная очистка сточных вод — это пропускание сточных вод через ионообменные смолы. При прохождении сточной воды через смолы подвижные ионы смолы заменяются на ионы соответствующею знака токсичных примесей. Происходит сорбирование токсичных ионов смолой, токсичные примеси выделяются в концентрированном виде как щелочные или кислые стоки, которые взаимно нейтрализуются и подвергаются реагентной очистке или утилизации.

Биологическая очистка сточных вод основана на способности микроорганизмов использовать растворенные и коллоидные органические соединения в качестве источника питания в процессах своей жизнедеятельности. При этом органические соединения окисляются до воды и углекислого газа.

Биологическую очистку ведут или в естественных условиях (поля орошения, поля фильтрации, биологические пруды), или в специальных сооружениях — аэротенках, биофильтрах. Лэротенки - это открытые резервуары с системой коридоров, через которые медленно протекают сточные воды, смешанные с активным илом. Эффект биологической очистки обеспечивается постоянным перемешиванием сточных вод с активным илом и непрерывной подачей воздуха через систему аэрации аэротенка. Активный ил затем отделяется от воды в отстойниках и вновь направляется в аэротенк. Биологический фильтр — это сооружение, заполненное загрузочным материалом, через который фильтруется сточная вода и на поверхности которого развивается биологическая пленка, состоящая из прикрепленных форм микроорганизмов.

Крупные промышленные предприятия имеют различные производства, которые дают различный состав загрязнения сточных вод. Водоочистительные сооружения таких предприятий выполнены следующим образом: отдельные производства имеют свои локальные очистные сооружения, аппаратное обеспечение которых учитывает специфику загрязнений и полностью или частично удаляет их, затем все локальные стоки направляются в ем кости-усреднители, а из них — на централизованную систему очистки. Возможны и иные варианты системы водоочистки в зависимости от конкретных условий.

Может быть использовано при сжигании угля, нефти и других видов топлива. Готовят топливную дисперсную систему, состоящую из топлива, жидких и твердых присадок путем диспергирования и перемешивания компонентов, подают приготовленную систему в камеру сгорания, причем приготовление топливной дисперсной системы проводят в две стадии, сначала готовят суспензию твердой присадки в жидкой присадке или в топливе, а затем в суспензию присадок или в суспензию топлива и присадки вводят оставшиеся компоненты топливной дисперсной системы, диспергируют, диаметр частиц суспензии не превышает 25 мкм, а диаметр частиц твердой присадки в суспензии не превышает 20 мкм. Позволяет повысить эффективность использования присадок.

Изобретение относится к области теплоэнергетики, в частности к сжиганию угля, нефти, и других видов топлива в топках котлов ТЭС, в отопительных котельных и т.д. Известны способы сжигания топлив, предусматривающие снижение загрязнения отходящих газов на выходе из установки сжигания путем обработки отходящих газов химическими и физико-химическими методами, которые требуют больших капитальных затрат на сооружение очистных установок и расходов на их эксплуатацию . Известны способы снижения концентрации вредных веществ при сжигании топлива непосредственно в камере сгорания путем использования дополнительных веществ, добавляемых к топливам или в топки . В способе для удаления окислов серы и азота из дымовых газов, получаемых при сжигании угля, нефти и других видов топлива, в топочные газы вдувают тонко измельченные частицы оксида магния в избыточном количестве по отношению к количеству, необходимому для полного связывания вредных веществ, в присутствии воды. Известный способ уменьшения выбросов вредных веществ при сжигании основан на впрыскивании присадки в виде водной суспензии непосредственно в камеру сгорания. Эти способы позволяют снизить концентрацию окислов азота и серы в отходящих дымовых газах в 2-2,5 раза. Однако в этих способах присадки вносят непосредственно в камеру сгорания, при этом присадки распределяются в камере относительно топлива и окислителя неравномерно, т.е. относительные концентрации воды и присадки к концентрации топлива и окислителя неоднородны и зависят от координаты пространства в камере сгорания. Поэтому подавление образования вредных компонентов отходящих газов и их поглощение происходят неэффективно. Известны способы снижения выбросов вредных веществ, предусматривающие предварительную обработку топлива и всех добавляемых компонентов перед подачей в камеру сгорания . В этих способах достигается равномерное распределение в пространстве топки всех компонентов и более полное связывание, подавление и удаление вредных выбросов, содержащихся в дымовых газах, являющихся продуктом горения. Наиболее близким к изобретению по совокупности существенных признаков является способ повышения эффективности сжигания топлива с уменьшенным образованием оксидов азота и серы в отходящих газах путем подготовки топливной дисперсной системы, состоящей из топлива, присадок в виде поглотителя серы и ингибитора и подачи подготовленной топливной дисперсной системы в камеру сгорания . В известном способе также достигается однородность распределения компонентов топлива в камере сгорания, однако в известном способе не предусмотрены условия, обеспечивающие однородность компонентов в топливной дисперсной системе при ее приготовлении, что снижает эффективность использования добавляемых к топливу веществ. Задача, на решение которой направлено изобретение, заключается в более полном связывании вредных веществ, образующихся в процессе сжигания топлива. Указанная задача решается за счет приготовления топливной дисперсной системы с улучшенным распределением в ней присадок, что приводит к более эффективному использованию последних. Указанный технический результат достигается тем, что в известном способе снижения выбросов вредных веществ в установках сжигания топлива, включающем приготовление топливной дисперсной системы, состоящей из топлива, жидких и твердых присадок путем диспергирования и перемешивания компонентов и подачу приготовленной топливной дисперсной системы в камеру сгорания, приготовление топливной дисперсной системы проводят в две стадии, сначала приготавливают суспензию твердой присадки в жидкой присадке или в топливе, а затем в суспензию присадок или в суспензию топлива и присадки вводят оставшиеся компоненты топливной дисперсной системы и диспергируют, при этом диаметр частиц суспензии присадок в топливе не превышает 25 мкм, а диаметр частиц твердой присадки в суспензии не превышает 20 мкм. Получают сложную топливную дисперсную систему, которая состоит из топлива, внутри которого равномерно распределены капли суспензии твердой присадки в жидкой присадке или капли суспензии топлива с твердой присадкой, в которой равномерно распределены капли жидкой присадки. Топливная дисперсная система в виде капель, включающих капли суспензии, попадая в зону высоких температур камеры сгорания, взрывообразно распадается на еще меньшие капли под действием давления паров жидкой присадки (вскипающей воды) с суспензией, которые находятся в капле топливной дисперсной системы, полученной при ее распылении в камере сгорания топлива. При приготовлении суспензии топлива и твердой присадки и последующего диспергирования с жидкой присадкой (водой) получают топливную дисперсную систему, в которой капли жидкой присадки (воды) находятся в суспензии или смеси присадки и топлива. Распыление капель топливной дисперсной системы в камере сгорания и затем дополнительное распыление при взрывообразном вскипании воды приводит к эффективному взаимодействию с образующимися вредными веществами и уменьшению выбросов в отходящие газы вредных продуктов неполного сгорания, окислов азота и серы. В качестве твердых присадок можно использовать CaCO 2 , MgO, Ca(OH) 2 и др. В качестве жидкой присадки можно использовать воду. Проведенный заявителем анализ уровня техники позволил установить, что заявителем не обнаружен аналог, характеризующийся признаками, идентичными всем существенным признакам заявленного изобретения, следовательно заявленное изобретение является новым. Анализ известных из уровня техники решений в отношении отличительных признаков заявленного изобретения показал, что заявленное решение не следует для специалиста явным образом из известного уровня техники, т.е. соответствует требованию изобретательского уровня. Обеспечиваемый изобретением технический результат по сравнению с прототипом заключается в следующем. Уменьшаются коэффициенты механического и химического недожога, и увеличивается степень сгорания топлива, за счет тонкого распыления предварительно подготовленного топлива в окислителе в топочном пространстве устройства сгорания топлива. Увеличивается поверхность контакта топлива с окислителем, а это приводит к тому, что продукты неполного сгорания топлива, которые являются вредными и содержатся в отходящих газах, образуются в уменьшенном количестве. Понижается максимальная (пиковая) температура в устройствах сжигания топлива, уменьшается градиент температуры, температурное поле становится более однородным, что приводит к уменьшению образования вредных соединений - окислов азота и продуктов неполного сгорания топлива. Увеличивается интенсивность горения мелких капель топливной дисперсной системы, дополнительно распыленной парами воды, что, кроме уменьшения коэффициентов механического и химического недожога, то есть уменьшения расхода топлива и выброса сажи, вызывает уменьшение длины факела горения, стабилизацию горения факела, что приводит к возможности уменьшения длины и объема установки сжигания топлива и капитальных затрат. При сжигании используют топливную дисперсную систему со следующими компонентами: топливо - жидкий серусодержащий нефтепродукт типа мазута, жидкая присадка - ингибитор реакции образования окислов азота - вода, серусвязующая твердая присадка - измельченный оксид магния. Кроме того, в камеру сжигания подают окислитель - кислород воздуха. На первой стадии измельченный оксид магния до размеров частиц не более 20 мкм, взятый в избыточном количестве по отношению к стехиометрическому в 1,5-1,8 раза, которого достаточно для связывания содержащейся в топливе серы, смешивают с водой, взятой в количестве 30%. Полученную суспензию твердой присадки в воде и мазут в диспергатор. В случае использования суспензии топлива и присадки на первой стадии измельченный оксид магния с размером частиц не более 20 мкм, взятый в количестве в соответствии с вышеуказанным, смешивают с топливом, затем полученную суспензию и воду подают в диспергатор. В диспергаторе непрерывного действия, при необходимости с линией рециркуляции, получают топливную дисперсную систему, в которой дисперсная фаза - суспензия присадки в воде - равномерно распределена в виде мелких частиц размером до 25 мкм в топливе. При сжигании топлива происходит относительное однородное распределение всех подаваемых компонентов системы. Капли топлива с каплями суспензии присадки в воде взрывообразно разбиваются на еще более мелкие капли топлива, сгорающие за меньшее время, что обеспечивает уменьшение коэффициентов механического и химического недожога, уменьшение количества продуктов неполного сгорания и уменьшение вредных выбросов в атмосферу. При проведении испытаний мода распределения частиц суспензии в мазуте изменялась от 7 мкм до 15 мкм в зависимости от режима работы диспергатора и содержания воды. При добавлении воды учитывалась вода, находящаяся в обводненном топливе. Таким образом, предварительное диспергирование присадки с водой или топливом позволяет равномерно распылять в камере сгорания не только топливо, но и равномерно вводить присадки, что ведет к увеличению эффективности связывания вредных компонентов и уменьшению их образования. Источники информации 1. Русанов А. А., Урбах И.И., Анастасиади А.П. Очистка дымовых газов в промышленной энергетике. М., Энергия, 1969. 2. Патент ФРГ N 3410731, кл. B 01 D 53/34, 1985. 3. Патент ФРГ N 3444469, кл. C 01 L 10/00, 1986. 4. Патент ФРГ N 3409014, кл. C 01 L 10/00, 1985. 5. Патент ФРГ N 3325570, кл. C 01 L 10/00, 1985. 6. Заявка RU N 94003846/26, кл. B 01 D 53/60, 1995.

Формула изобретения

Способ снижения выбросов вредных веществ в установках сжигания топлива, включающий приготовление топливной дисперсной системы, состоящей из топлива, жидких и твердых присадок путем диспергирования и перемешивания компонентов и подачу приготовленной топливной дисперсной системы в камеру сгорания, отличающийся тем, что приготовление топливной дисперсной системы проводят в две стадии, сначала приготавливают суспензию твердой присадки в жидкой присадке или в топливе, а затем в суспензию присадок или в суспензию топлива и присадки вводят оставшиеся компоненты топливной дисперсной системы, диспергируют, при этом диаметр частиц суспензии не превышает 25 мкм, а диаметр частиц твердой присадки в суспензии не превышает 20 мкм.



Поделиться