Прогнозирование пожаров. Прогнозирование обстановки на пожаре

Cлайд 1

Тема № 1. Теоретические основы прогнозирования обстановки на пожаре. Локализация и ликвидация пожаров. Лекция № 1. Чрезвычайные ситуации и их виды. Классификация пожаров и их характеристика. Зоны пожара. Периоды развития пожара. План лекции Введение. 1. Чрезвычайные ситуации и их виды. 2. Классификация пожаров и их характеристика. 3. Зоны пожара. Периоды развития пожара.

Cлайд 2

Чрезвычайная ситуация - это состояние, при котором в результате негативных воздействий от реализации какой-либо опасности на объекте экономики, определенной территории или акватории нарушаются нормальные условия жизни и деятельности людей, возникает угроза их жизни и здоровью, наносится ущерб имуществу населения, экономике и окружающей природной среде.

Cлайд 3

1.Чрезвычайные ситуации техногенного характера 2.Чрезвычайные ситуации природного характера 3.Чрезвычайные ситуации биолого-социального характера КЛАССИФИКАЦИЯ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ 4.Террористические акции

Cлайд 4

Чрезвычайные ситуации техногенного характера 1.1. Транспортные аварии (катастрофы) 1.2. Пожары (взрывы с последующим горением) 1.3. Аварии с выбросом (угроза выброса) аварийно химически опасных веществ (АХОВ) 1.4. Аварии с выбросом (угроза выброса) радиоактивных веществ (РВ) 1.5. Аварии с выбросом (угроза выброса) биологически опасных веществ (БОВ) 1.6. Внезапное обрушение сооружений 1.7. Аварии на электроэнергетических системах 1.8. Аварии на коммунальных системах жизнеобеспечения 1.9. Аварии на очистных сооружениях 1.10. Гидродинамические аварии

Cлайд 5

Чрезвычайные ситуации природного характера 2.1. Геофизические опасные явления 2.2. Геологические опасные явления 2.3. Метеорологические (агрометеорологические) опасные явления 2.4.Морские гидрологические опасные явления 2.5. Гидрологические опасные явления 2.6. Природные пожары

Cлайд 6

Чрезвычайные ситуации биолого- социального характера 3.1. Инфекционная заболеваемость людей 3.2. Инфекционная заболеваемость сельскохозяйственных животных 3.3. Поражение сельскохозяйственных растений болезнями и вредителями Террористические акции

Cлайд 7

Cлайд 8

Cлайд 9

Классификация ЧС по Постановлению Правительства РФ от 13 сентября 1996 года № 1094 Ранг 1 2 3 4 5 6 Определение ЧС Локальная ЧС Местная ЧС Территориаьная ЧС Региональная ЧС Федеральная ЧС Трансграничная ЧС Полный ущерб, МРОТ 5 млн. 1-5 тыс. 500 1000 300-500 100-300 Уровень управленияЧС Руководство организации Органы местного самоуправления Исполнительная власть субъекта РФ Исполнительная власть субъектов РФ Исполнительная власть субъектов РФ Правительство РФ

Cлайд 10

Таблица 1.1 Классификация опасностей и рисков по источникам их возникновения и поражаемым объектам Источник Объект (реципиент) Природный Социальный Техногенный Природный Природный Природно-социальный Природно-техногенный Социальный Социо-природный Социальный Социо-техногенный Техногенный Техно-природный Техно-социальный Техногенный

Cлайд 11

Таблица 1.2. Классификация катастроф по масштабу Тип Периодично-сть Ущерб, дол. Число жертв, чел. Объекты Планетарная Гибель жизни Столкновение с крупным астероидом, война с применением ОМП Глобальная 30 - 40 лет 109 - 1010 104 – 2*106 Ядерные, ракетно-космические, военные Национальная 10 - 15 лет 108 – 109 103 – 105 Ядерные, химические, военные Региональная 1 - 5 лет 107 – 108 102 – 104 Химические, энергетические, транспортные Местная 1 - 6 мес. 106 – 107 101 – 103 Технические Объектовая 1 - 30 дней 105 – 106 100 – 102 Технические

Cлайд 12

Таблица 1.3. Критерии W классификации ЧС по степени тяжести Параметр Wr Класс ЧС r Наименование Локальная Местная Террито- риальная Региона-льная Феде-ральная Транс-граничная 1 К-во пострад., чел. ≤10 10< W1≤50 50

Cлайд 13

Табл. 1.4 Динамика пожаров и потерь в РФ Годы Число пожаров, тыс. Прямой ущерб, млрд. руб. Материальные потери, млрд. руб. Число погибших, тыс. чел. Пострадало, тыс. чел. 1995 294,1 0,8 28 14,9 13,5 1996 294,8 1,5 29,1 15,9 14,4 1997 273,9 1,4 25,1 13,9 14,1 1998 265,9 1,5 26,6 13,7 14,0 1999 259,4 1,8 27,0 14,9 14,5 2000 246,0 1,8 23,8 16,3 14,2 2001 246,3 2,6 45,5 18,3 14,2 2002 259,8 3,4 59,5 19,9 14,4 2003 239,3 4,2 72,6 19,27 14,1 2004 231,4 5,8 101,7 18,37 13,7

Cлайд 14

Группы пожаров (по виду газообмена) Общая классификация пожаров На открытых пространствах В ограждениях Классы пожаров (по виду горючих веществ) Класс А Твердые горючие вещества Класс В ЛВЖ и ГЖ Класс С Горючие газы Класс Д Горючие металлы и их сплавы Класс Е Электрооборудование под напряжением Сочетание Пожаров различных классов Распространяющиеся Виды пожаров Нераспространяющиеся Наземные Подземные Надземные(воздушные) Частные классификации пожаров Лесные пожары Пожары в резервуарах Пожары фонтанов Другие виды пожаров

Cлайд 15

ОБЩАЯ КЛАССИФИКАЦИЯ ПОЖАРОВ По условиям газообмена и теплообмена с окружающей средой все пожары разделяются на два обширных класса: I КЛАСС ПОЖАРЫ НА ОТКРЫТОМ ПРОСТРАНСТВЕ II КЛАСС ПОЖАРЫ В ОГРАЖ- ДЕНИЯХ

Cлайд 16

ПОЖАРЫ НА ОТКРЫТОМ ПРОСТРАНСТВЕ I класс: РАСПРОСТРАНЯЮЩИЕСЯ НЕРАСПРОСТРАНЯЮЩИЕСЯ МАССОВЫЕ

Cлайд 17

РАСПРОСТРАНЯЮЩИЕСЯ ПОЖАРЫ класс Iа Пожары с увеличивающимися размерами (шири-на фронта, периметр, радиус, протяженность флангов пожара и т.д). Пожары на открытом пространстве распространяются в различных направлениях и с разной скоростью в зависимости от условий теплообмена, величины разрывов, размеров факела пламени, критических тепловых потоков, вызывающих возгорание материалов, направления и скорости ветра и других факторов.

Cлайд 18

НЕРАСПРОСТРАНЯЮЩИЕСЯ ПОЖАРЫ класс I б Пожары, у которых размеры остаются неизменными.Локальный пожар представляет собой частный случай распространяющегося, когда возгорание окружающих пожар объектов от лучистой теплоты исключено. В этих условиях действуют метеорологические параметры. Так, например, из достаточно мощного очага горения огонь может распространяться в результате переброса искр, головней в сторону негорящих объектов.

Cлайд 19

МАССОВЫЕ ПОЖАРЫ класс I в Это совокупность сплошных и отдельных пожаров в зданиях или открытых крупных складов различных горючих материалов. Под отдельным пожаром подразумевают пожар, возникший в каком-либо отдельном объекте. Под сплошным пожаром подразумевается одновременное интенсивное горение преобладающего числа объектов на данном участке. Сплошной пожар может быть распространяющимся и нераспространяющимся.

Cлайд 20

Cлайд 21

ОТКРЫТЫЕ ПОЖАРЫ КЛАСС IIа Развиваются при полностью или частично открытых проемах (ограниченная вентиляция). Они характеризуются высокой скоростью распространения горения с преобладающим направлением в сторону открытых, хотя бы и незначительно, проемов и переброса через них факела пламени. Вследствие этого создается угроза перехода огня в верхние этажи и на соседние здания (сооружения). При открытых пожарах скорость выгорания материалов зависит от их физико-химических свойств, распределения в объеме помещения и условий газообмена.

Cлайд 22

Открытые пожары обычно подразделяют на две группы. К первой группе относятся пожары в помещениях высотой до 6 м, в которых оконные проемы расположены на одном уровне и газообмен происходит в пределах высоты этих проемов через общий эквивалентный проем (жилые помещения, школы, больницы, административные и подобные помещения). Ко второй группе относятся пожары в помещениях высотой белее 6 м, в которых проемы в ограждениях располагаются на разных уровнях, а расстояния между центрами приточных и вытяжных проемов могут быть весьма значительными.В таких помещениях и частях здания наблюдаются большие перепады давления по высоте и, следовательно высокие скорости движения газовых потоков, а также скорость выгорания пожарной нагрузки. К таким помещениям относятся машинные и технологические залы промышленных зданий, зрительные и сценические комплексы театров и т.д. Закрытые пожары могут быть разделены на три группы: в помещениях с остекленными оконными проемами (помещения жилых и общественных зданий); в помещениях с дверными проемами без остекления (склады, производственные помещения, гаражи и т.д.); в замкнутых объемах без оконных проемов (подвалах промышленных зданий, камерах холодильников, некоторых материальных складах, трюмах, элеваторах, бесфонарных зданиях промышленных предприятий).

Cлайд 25

I. Цели и задачи занятия 1. Учебная: изучить с курсантами виды пожаров, зоны пожара, основные параметры и опасные факторы пожара, динамику их развития. 2. Развивающая: развивать у курсантов тактическое мышление при тушении пожаров. 3. Воспитательная: воспитывать у обучающихся стремление к углубленному освоению материала по теме занятия, расширению профессионального кругозора, обучению методам самостоятельной работы с первоисточниками и учебными материалами, а также личную ответственность за выполнение поставленной задачи, самостоятельность и инициативу.


Профессиональные компетенции: - способность ориентироваться в основных нормативно-правовых актах в области обеспечения безопасности (ПК-9); - готовность к выполнению профессиональных функций при работе в коллективе (ПК-10); - способность разрабатывать в составе коллектива и под руководством технические проекты тушения пожаров (ПК-25).




Литература основная 1. Теребнев В.В., Подгрушный А.В. Пожарная тактика. Основы тушения пожаров. - Екатеринбург: Калан, с. 2. Теребнев В.В., Богданов А.Е., Семенов А.О., Тараканов Д.В. Принятие решений при управлении силами и средствами на пожаре. – Екатеринбург: ООО «Издательство «Калан», – 100 с. дополнительная: 3. Смирнов В.А. Организация работы штаба пожаротушения: учебное пособие/ В.А. Смирнов, Д.А. Черепанов, А.О. Семенов, О.Н. Белорожев, А.В. Ермилов, И.В. Багажков, Д.Г. Филин. – Иваново: ООНИ ЭКО ИвИ ГПС МЧС России, – 119 с. нормативная: 4. Приказ МЧС России от «Об утверждении Порядка тушения пожаров подразделениями пожарной охраны», 2011 г. 5. Приказ Минтруда России от N 1100 н "Об утверждении Правил по охране труда в подразделениях федеральной противопожарной службы Государственной противопожарной службы" (Зарегистрировано в Минюсте России N 37203). 6. Анализ обстановки с пожарами и последствий от них на территории Российской Федерации за 2015 год.




Явления массо- и теплообмена являются общими для всех пожаров, только ликвидация горения может привести к их прекращению. Эти явления могут привести к возникновению частных явлений: взрывов, деформаций и разрушения технологических аппаратов, строительных конструкций, вскипания или выброса нефтепродуктов.


Опасные факторы пожара (ОФП) – факторы пожара, воздействие которых может привести к травме, отравлению или гибели человека и (или) к материальному ущербу. Опасные факторы пожара (ОФП) – факторы пожара, воздействие которых может привести к травме, отравлению или гибели человека и (или) к материальному ущербу. Число погибших в странах мира в год на 100 тыс. чел.


Опасными факторами, воздействующими на людей и материальные ценности, являются: - пламя и искры; - пламя и искры; - повышенная температура окружающей среды; - повышенная температура окружающей среды; - токсичные продукты горения и термического разложения; - токсичные продукты горения и термического разложения; - дым; - дым; - пониженная концентрация кислорода. - пониженная концентрация кислорода.


К вторичным проявлениям опасных факторов пожара, воздействующим на людей и материальные ценности, относятся: - осколки, части разрушившихся аппаратов, агрегатов, установок, конструкций; - осколки, части разрушившихся аппаратов, агрегатов, установок, конструкций; - радиоактивные и токсичные вещества и материалы, вышедшие из разрушенных аппаратов и установок; - радиоактивные и токсичные вещества и материалы, вышедшие из разрушенных аппаратов и установок; - электрический ток, возникший в результате выноса высокого напряжения на токопроводящие части конструкций, аппаратов, агрегатов; - электрический ток, возникший в результате выноса высокого напряжения на токопроводящие части конструкций, аппаратов, агрегатов; - опасные факторы взрыва, происшедшего вследствие пожара; - опасные факторы взрыва, происшедшего вследствие пожара; - огнетушащие вещества. - огнетушащие вещества.


Тепло, выделяющееся в зоне химической реакции горения, расходуется на нагрев окружающей среды и горючих веществ и материалов: Qоб.=Qср+Qг Qг= 3% от Qоб Тепло, передаваемое во внешнюю среду, способствует распространению пожара. Передача тепла на пожаре осуществляется путем конвекции, излучения, теплопроводности.


Пожарная нагрузка – масса всех горючих и трудногорючих веществ и материалов, приходящаяся на 1 м площади пола помещения, или площади, занимаемой этими веществами и материалами на открытой площадке. Различают постоянную и временную пожарную нагрузку: Мi – масса i-го вещества, материала. S – площадь пола, площадки, м 2


Массовая скорость выгорания Vm – потеря массы веществ и материалов в единицу времени с единицы площади горения: Массовая скорость выгорания зависит от агрегатного состояния горючего вещества, начальной температуры и многих других условий. Существенное влияние оказывает концентрация окислителя в окружающей среде. dm – изменение массы вещества за время dt; S – площадь горения, м 2


Линейная скорость распространения горения – расстояние, пройденное фронтом пламени в единицу времени по поверхности вещества или материала: Температура пожара на открытой площадке – температура пламени. Температура пожара в ограждениях – среднеобъемная температура газовой среды в помещениях. Температура пожара на открытой площадке – температура пламени. Температура пожара в ограждениях – среднеобъемная температура газовой среды в помещениях. l-расстояние, пройденное фронтом пламени (м); t – время распространения огня (с).


Интенсивность тепловыделения – количество теплоты, выделяющееся на пожаре в единицу времени. Интенсивность тепловыделения зависит от газообмена, рода горючего вещества и т.д. Интенсивность тепловыделения – количество теплоты, выделяющееся на пожаре в единицу времени. Интенсивность тепловыделения зависит от газообмена, рода горючего вещества и т.д. Дымообразование на пожаре – количество дыма, выделяемого со всей площади пожара. Существует полное и неполное сгорание веществ и материалов. Дымообразование на пожаре – количество дыма, выделяемого со всей площади пожара. Существует полное и неполное сгорание веществ и материалов. Дым – дисперсная система, состоящая из мельчайших твердых частиц, взвешенных в смеси продуктов сгорания с воздухом (диаметр 1–0,01 мкм). Дым – дисперсная система, состоящая из мельчайших твердых частиц, взвешенных в смеси продуктов сгорания с воздухом (диаметр 1–0,01 мкм).


Концентрация дыма – количество твердых взвешенных частиц в единице объема. Концентрация дыма – количество твердых взвешенных частиц в единице объема. Интенсивность газообмена – расход приточного воздуха, поступающего в зону горения за единицу времени на единице площади пожара. Интенсивность газообмена – расход приточного воздуха, поступающего в зону горения за единицу времени на единице площади пожара.




ОЧАГ ПОЖАРА – место первоначального возникновения пожара. ПЕРИМЕТР ПОЖАРА – общая длина внешней границы площади пожара. ПЛОЩАДЬ ПОЖАРА – площадь проекции зоны горения на горизонтальную или вертикальную плоскость. ФРОНТ ПОЖАРА – часть периметра пожара, в направлении которой происходит распространение горения.







Вопрос 2 Все пожары классифицируются по группам, классам и видам. 1. Классификация пожаров по виду горючего материала используется для обозначения области применения средств пожаротушения. 2. Классификация пожаров по сложности их тушения используется при определении состава сил и средств подразделений пожарной охраны и других служб необходимых для тушения пожаров. 3. Классификация опасных факторов пожара используется при обосновании мер пожарной безопасности, необходимых для защиты людей и имущества при пожаре.


Классификация пожаров. Пожары классифицируются по виду горючего материала и подразделяются на следующие классы: 1) пожары твердых горючих веществ и материалов (А); 2) пожары горючих жидкостей или плавящихся твердых веществ и материалов (В); 3) пожары газов (С); 4) пожары металлов (Д); 5) пожары горючих веществ и материалов электроустановок, находящихся под напряжением (Е); 6) пожары ядерных материалов, радиоактивных отходов и радиоактивных веществ (F).


Виды пожаров: распространяющиеся и нераспространяющиеся. Пожары классифицируют по размерам и материальному ущербу, по продолжительности и др. признакам. Пожары в ограждениях подразделяют на: регулируемые вентиляцией и регулируемые пожарной нагрузкой. По характеру воздействия на ограждения: локальные и объемные пожары. Объемные пожары в ограждения называют открытыми, а локальные пожары, протекающие при закрытых дверях, окнах – закрытыми.


На открытых пространствах выделяют подгруппу «массовый пожар», т.е. совокупность отдельных и сплошных пожаров в населенных пунктах или на промышленных предприятиях. Сплошной пожар – одновременное горение преобладающего числа заданий и сооружений на участке застройки. Огневой шторм – особая форма нераспространяю- щегося сплошного пожара, характеризующая образованием единого гигантского турбулентного факела пламени с мощной конвективной колонной восходящих по- токов продуктов горения и нагретого воздуха, и потоком свежего воздуха к границам горения со скоростью более м/с.


Зона горения – часть пространства, в котором процессы термического разложения или испарения горючих веществ и материалов (твердых, жидких, газов, паров) происходят в объеме диффузионного факела пламени. Зона теплового воздействия примыкает к границам зоны горения. В этой части пространства протекает процессы теплообмена между поверхностью пламени и окружающим пространством.




При пожаре создается три зоны с различными давлениями: верхняя, нейтральная, нижняя: Высота в помещении, на которой давление в его объеме равно наружному или давлению в соседнем помещении, называется уровнем равных давлений (ее высота 1,5 – 2 метра от уровня пола). В+ПГ В Нейтральная зона Верхняя Нижняя






Задание на самоподготовку 1. Теребнев В.В., Подгрушный А.В. Пожарная тактика. Основы тушения пожаров. - Екатеринбург: Калан, Изучить – гл Теребнев В.В., Богданов А.Е., Семенов А.О., Тараканов Д.В. Принятие решений при управлении силами и средствами на пожаре. – Екатеринбург: ООО «Издательство «Калан», Изучить – гл Смирнов В.А. Организация работы штаба пожаротушения: учебное пособие/ В.А. Смирнов, Д.А. Черепанов, А.О. Семенов, О.Н. Белорожев, А.В. Ермилов, И.В. Багажков, Д.Г. Филин. – Иваново: ООНИ ЭКО ИвИ ГПС МЧС России, 2014 Изучить – гл.1,2.

В результате изучения объекта в оперативно-тактическом отношении в зависимости от степени пожарной опасности технологического процесса производства, величины пожарной нагрузки, концентрации материальных ценностей и конструктивных особенностей здания, устанавливается место возникновения пожара в наиболее сложный по обстановке вариант возможного пожара. На такие объекты, как нефтебазы, театры, нефтеперерабатывающие заводы, электростанции, производственные здания с пожаровзрывоопасной технологией разрабатывается несколько вариантов возможного пожара, каждый из которых может иметь свои особенности. Так, для нефтебазы рассматривается вариант пожара в резервуаре, тушение которого потребует наибольшее количество сил и средств. Одновременно рассматривается усложненный вариант тушения пожара, когда горят все резервуары, расположенные в одном обваловании. Для театра рассматриваются варианты пожара на сцене и в зрительном зале.

После того как будет определено место возникновения пожара, производится оценка обстановки к моменту введения сил и средств первым прибывшим пожарным подразделением. Одной из основных величин, характеризующих обстановку на пожаре, является его площадь на данный момент времени, которая определяется расчетом.

В отдельных случаях при разработке планов пожаротушения площадь пожара расчетом не определяется, а принимается равной площади помещения. Так, при пожаре на сцене театра при опущенном противопожарном занавесе за максимальную площадь пожара принимается площадь сцены; при пожаре на лесоскладе - площадь квартала, при пожарах в наземных резервуарах о ЛВЖ и ГЖ - площадь зеркала горящего резервуара или площадь зеркала горящих резервуаров, находящихся в одном обваловании; при пожарах в кабельных помещениях электростанций и металлургических заводов (кабельные шахты, полуэтажи, подвалы) - помещения наибольшего объема, а в кабельных туннелях - объем двух смежных отсеков.

Исходными данными для определения площади пожара являются: время свободного развития пожара τ св, мин; линейная скорость распространения горения V л, м/мин и форма развития пожара.



Время свободного развития пожара

где τ д.с. - время с момента возникновения пожара до сообщения о нем в пожарную часть (принимается в дневное время 5-8, в ночное 8-12 мин); τ сл - время следования первого пожарного подразделения к месту вызова, мин; τ б.р. - время боевого развертывания первого пожарного подразделения (принимается в соответствии с нормативами по пожарно-строевой подготовке в зависимости от расстояния до водоисточников), мин.

Линейная скорость распространения горения принимается по справочникам. Так как в процессе развития пожара V л не является постоянной, то в первые 10 мин она условно принимается равной 0,5V л табл. , а после 10 мин свободного горения и до подачи стволов V л = V л табл. .

При распространении пожара после введения стволов на его тушение V л принимается условно равной 0,5V л табл. . Если после 10 мин горение распространилось через проем в соседнее помещение, то скорость распространения горения в нем принимается равной V л табл. . Такой же принимают скорость, если распространение горения в соседние помещения происходит в результате прогорания перегородки или закрытой двери. При этом время прогорания перегородки или закрытой двери учитывается как время развития пожара.

Следует иметь в виду, что если на пути движения огня имеются разрывы в пожарной нагрузке, которые перекрываются факелом пламени, то они в учет не принимаются. Однако в этом случае значение V л следует принимать минимальным. Кроме того, на скорость распространения горения влияет наличие направленных газовых потоков. Если место возникновения пожара удалено от проемов, через которые происходит газообмен, то скорость распространения горения в сторону проемов следует принимать в 1,5-2 раза большей, чем в противоположную.

Во всех остальных случаях при пожарах в ограждениях при равномерно распределенной пожарной нагрузке и отсутствии газовых потоков фронт пламени по всем направлениям распространяется с одинаковой скоростью. При пожарах на открытом пространстве максимальное значение скорости распространения горения следует принимать по направлению ветра.

При горении волокнистых материалов в разрыхленном состоянии, пыли и жидкостей значение V л принимается равным табличному с момента возникновения горения. При горении растекающейся жидкости скорость распространения горения принимается равной скорости растекания жидкости.

Для определения площади пожара при горении твердых горючих материалов находят расстояние, на которое переместится фронт пламени от первоначального места его возникновения за время свободного развития. На основании этого уточняют форму площади пожара. Расстояние, пройденное фронтом пламени

При τ св ≤ 10 мин

При τ св > 10 мин

L=5V л +V л τ 2

(до момента введения первого ствола), где 5V л = 0,5V л ×10 мин; τ 2 = τ св - 10

При развитии пожара после введения стволов до локализации пожара

L=5V л + V л τ 2 +0,5V л τ 3

где τ 3 = τ общ - (10 - τ 2)

Величину L, найденную с учетом линейной скорости распространения горения на всех направлениях, отложить в масштабе от принятого очага пожара, который обозначается красным флажком на плане помещения, и, таким образом, определить границы площади пожара и его геометрическую форму.

Если на пути распространения фронта пламени нет никаких преград, то площадь пожара будет иметь круговую форму. Если фронт пламени будет ограничен с одной стороны стеной или иной преградой, то площадь пожара будет иметь форму полукруга. При ограничении фронта пламени с двух сторон площадь пожара, в зависимости от места его возникновения, принимает угловую или прямоугольную форму. Если ширина здания не превышает 10 м, то к моменту введения стволов первый прибывшим пожарным подразделением пожар, независимо от места его возникновения, как правило, принимает прямоугольную форму.

Площадь пожара:

а) при круговом развитии и времени распространения горения до 10 мин включительно

при τ св > 10 мин

При развитии пожара после введения ствола до локализации пожара

б) при угловом распространении горения (α = 90°) и в форме полукруга указанные формулы соответственно имеют вид:

для углового развития при τ св ≤ 10 мин

при τ св > 10 мин

,

для полукруга при τ св ≤ 10 мин

,

при τ св > 10 мин

в) при прямоугольной форме развития пожара:

при τ св ≤ 10 мин

;

при τ св > 10 мин

при распространении пожара после введения стволов до локализации

где а - ширина фронта пламени (ширина помещения); n - число направлений развития пожара; S п - площадь пожара, м 2 .

По найденной площади пожара определяется возможность локализации его первым прибывшим пожарным подразделением. Для этого следует проверить, выполняется ли условие локализации:

где Q ф, Q тр - соответственно фактический и требуемый расходы огнетушащего вещества, л/с.

Требуемый расход огнетушащего вещества для тушения пожара:

где J тр - требуемая интенсивность подачи огнетушащего вещества, л/(с×м 2).

Фактический расход определяется, исходя из тактических возможностей отделений по подаче огнетушащих веществ на тушение с учетом численности боевых расчетов и проведения других работ (разведка пожара, спасание людей и т.д.).

Для первого прибывшего подразделения (при условия подачи в качестве огнетушащего вещества воды или растворов) принято, что отделение на автонасосе и автоцистерне может обеспечить подачу стволов с общим расходом 14 л/с (два ствола А или два ГПС); при работе в изолирующих противогазах - одного ствола А или Б.

Если подразделение не может подать огнетушащее вещество на всю площадь пожара, то проверяется возможность локализации его по площади тушения с учетом возможных направлений ввода стволов через оконные, дверные и иные проемы. В этом случае

где S т - площадь тушения, м 2 .

Площадь тушения:

при тушении по фронту

при тушении по периметру:

а)при прямоугольной форме развития пожара

S т = 2h(a+b-2h)

при круговой форме развития пожара

где h - глубина тушения (для ручных стволов h = 5 м, для лафетных - 10м); а - ширина площади пожара, м; b - длина площади пожара, м; R - радиус пожара при круговой форме его развития, м.

Далее необходимо сравнить требуемый расход огнетушащего вещества с фактическим и сделать вывод: сможет ли первое прибывшее подразделение подать требуемый расход огнетушащих веществ на тушение и одновременно выполнить другие необходимые работы, обеспечивающие успешное тушение пожара и опасение людей, т.е. сможет ли локализовать пожар или нет. Если первое прибывшее пожарное подразделение локализовать пожар не сможет, то необходимо привлечь силы и средства по повышенному номеру вызова.

Прогнозирование обстановке на
пожаре. Основные расчетные соотношения
1.
План лекции
Введение.
Прогнозирование обстановке на
пожаре. Ее цели и задачи.
2.
2. Основные расчётные
соотношения.

Прогноз последствий – это заблаговременный
прогноз обстановки на пожаре.
Под обстановкой на пожаре понимается
совокупность на определённый момент времени
данных о параметрах развития и тушения
пожара
Под оценкой и прогнозированием обстановки
понимается сбор и обработка исходных данных о
пожаре, определение размеров пожара и
нанесение их на карту (план), определение
влияния поражающих факторов.

Вопрос № 1 Прогнозирование и оценка
обстановки на пожаре
включает в себя:
1.Расчет динамики развития возможного
пожара.
2.Определение температурного режима на
пожаре, тепловых потоков.
3.Прогнозирование динамики задымления в
горящем и смежных помещениях, объёмах,
территории.
4. Прогнозирование зон загазованности,
масштабов возможных разрушений,
деформаций, проливов и т.д.

Прогнозирование проводится с целью:
1. Разработка активного варианта тушения пожара
2. Разработка и обоснование способов и приемов
проведения спасательных операций, ликвидаций
последствий аварийных ситуаций, пожаров, обеспечения
безопасности людей и материальных ценностей.
3. Разработка мер по обеспечению безопасных условий
ведения боевых действий, рассмотрение вопросов охраны
труда.
4. Разработка организационно-технических мер и
инженерных решений по совершенствованию
противопожарной защиты объекта дипломного
проектирования, организации подготовки и повышения
уровня боеготовности и боеспособности пожарных
подразделений, охраняющих данный объект, а также
подразделений пожарной охраны и пожарноспасательных служб региона, города

Вопрос №2. Основные расчётные соотношения
1.)При решении пожарно – тактикческих
задач используют следующие параметры
развития пожара
линейная скорость распространения горения, Vл
(м/мин.);
Время свободного развития, св (мин)
путь, пройденный огнем, L, (м);
площадь пожара, Sп, (м2);
периметр пожара, Pп, (м);
фронт пожара. Фп, (м);
скорость роста площади пожара, Vs, (м2/мин.);
скорость роста периметра пожара,Vр,. (м/мин.);
скорость роста фронта пожара, Vф, (м/мин.).

1.1)Линейная скорость распространения горения
представляет собой физическую величину,
характеризуемую поступательным движением фронта
пламени в данном направлении в единицу времени (м/с).
Она зависит от вида и природы горючих веществ и
материалов, от начальной температуры, способности
горючего к воспламенению, интенсивности газообмена на
пожаре, плотности теплового потока на поверхности
веществ и материалов и других факторов.
Линейная скорость распространения горения характеризует
способность горючего материала к перемещению по своей
поверхности высокотемпературной зоны химических
превращений. Этот параметр зависит от многих факторов,
в частности от физикохимических свойств горючего
материала, его агрегатного состояния, условий тепло-,
массо- и газообмена на пожаре и т.п.

Линейная скорость распространения горения
определяется по по таблице (приложение №). При
определении размеров возможного пожара линейную
скорость распространения горения в первые 10 минут
от начала возникновения пожара необходимо
принимать половинной от табличного значения
(0,5Vл). После 10 минут и до момента введения
средств тушения в зону горения первым
подразделением, прибывшим на пожар, линейная
скорость при расчете берется равной табличной (Vл), а
с момента введения первых средств тушения (воды,
ВМП, ОПС и т.д.) до момента локализации пожара она
вновь принимается половинной от табличного
значения (0,5Vл).

1.2). Определение времени свободного
развития горения.
Время свободного развития пожара - временной
промежуток от момента возникновения пожара до
начала его тушения.
св.= д.с.+ сб.+ сл.+ б.р. , [мин.],
Где:
сб.=1,5 - 2 мин. – время сбора личного состава по
тревоге;
б.р. = время, затраченное на проведение боевого
развертывания (в пределах 6--8 минут).
д.с = в практических расчётах время до сообщения
о пожаре принимается в пределах 8-12 минут.

сл. = время следования первого подразделения от
ПЧ до места вызова, берется из расписания
выездов пожарных подразделений, также сл.
можно определить по формуле:
сл.=,
[мин.],
L – длина пути следования подразделения от
пожарного депо до места пожара, [км];
Vсл. - средняя скорость движения пожарных
автомобилей, [км/ч] (при расчетах можно
принимать: на широких улицах с твердым
покрытием 45 км/ч, а на сложных участках, при
интенсивном движении и грунтовых дорогах 25
км/ч).

1.3).Определение пути, пройденного огнём.
Путь, пройденный огнём, определяется по формуле в
зависимости от времени до сообщения о пожаре на ЦУС.
Путь, пройденный огнем, от места возникновения
пожара является изменяющейся величиной, зависит от
линейной скорости распространения горения и периода
распространения горения. В зависимости от времени,
путь, пройденный огнем, можно определить по одной из
формул:
если св. 10 минут:
L=0,5Vл св. , [м];
если св.>10 минут:
L=0,5Vл 1+Vл 2=0,5Vл10+Vл 2=5Vл+Vл 2 , [м],
где:
1=10 минут;
2= св.- 1= св -10, [мин.]

1.4).Определение формы площади пожара.
В зависимости от места возникновения пожара,
геометрических размеров помещения или здания,
наличия противопожарных преград, пути, пройденного
огнём, площадь пожара может приобретать различные
формы: круговую, угловую, прямоугольную. Деление
форм площади пожара на три вида является условным и
применяется для упрощения практических расчётов.
На вычерченном плане этажа (участка, цеха, здания),
где произошел условный пожар, наносится длина пути
распространения горения [L] на заданный момент
времени (в масштабе), определяется и условнографически обозначается форма площади пожара. В
данном пункте записывается форма площади пожара.

1.3).Определение площади пожара.
Площадь пожара – это площадь проекции поверхности
горения твёрдых и жидких веществ и материалов на
поверхность земли или пола помещения.
КРУГОВАЯ форма площади
пожара встречается при
возникновении горения в
геометрическом центре
помещения или в глубине
большого участка с пожарной
нагрузкой, если скорость его
распространения во всех
направлениях при безветренной
погоде приблизительно
одинакова, (Рис.1а).
Sп =k× L2 , [м2].
K= 1

УГЛОВАЯ форма характерна для пожара, который
возникает на границе большого участка с пожарной
нагрузкой и распространяется внутри сектора. Она
может иметь место на тех же объектах, что и круговая.
Максимальный угол сектора зависит от геометрической
конфигурации участка с пожарной нагрузкой и от места
возникновения горения. Чаще всего эта форма
встречается на участках с углом 90 и 180 градусов.
УГЛОВАЯ 180o,
(Рис.1б):
Sп = k× L2,
[м2 ].
K= 0,5

УГЛОВАЯ 90o,
(Рис.1в):
Sп = k× L2 [м2].
K= 0,25

ПРЯМОУГОЛЬНАЯ форма площади пожара
встречается, когда горение возникает на
границе или в глубине длинного участка с
пожарной нагрузкой (длинные здания любого
назначения и другие участки с пожарной
нагрузкой небольшой ширины) и
распространяется в одном или нескольких
направлениях: по ветру – с большей, против
ветра – с меньшей, а при относительно
безветренной погоде примерно с одинаковой
линейной скоростью.
Пожары в зданиях с небольшими
помещениями имеют прямоугольную форму,
(Рис.1г;Рис.1д).
Sп =anL, [м2 ], где:
a – ширина помещения (здания), [м];
n – число сторон распространения горения
(чаще всего «n» равно единице или двум).

В процессе развития пожара его форма может изменяться.
Так, начальная круговая или угловая форма площади
пожара через определенный промежуток времени (по
достижении горения ограждающих конструкций) перейдет
в прямоугольную:
из круговой и угловой 180 гр. перейдет в прямоугольную,
при условии: 2L a;
из угловой 90 гр.: L a.
В итоге, если пожар будет и дальше распространяться, он
примет форму данного геометрического участка. При
прямоугольной форме помещения (здания) площадь
пожара в данном случае будет равна площади этого
помещения (здания):
Sп = аb, [м2], где:
b – длина помещения (здания), [м].



зависимости (рис. 1.4)

Если пожар имеет прямоугольную форму, то
площадь пожара увеличивается по линейной
зависимости (рис. 1.6)

При горении нефти и нефтепродуктов в
резервуарах форма площади пожара
соответствует правильной геометрической
фигуре емкости (кругу или прямоугольнику), а
при разлитой жидкости – ее площади.
Форма площади развивающегося пожара
является основой для определения расчётной
схемы, направлений сосредоточения и введения
сил и средств тушения, а также потребного их
количества для осуществления боевых действий.

1.5).Определение периметра пожара.
Периметр пожара (Рп) – это длина внешней границы
площади пожара. Данная величина имеет важное
значение для оценки обстановки на пожарах,
развившихся до крупных размеров, когда сил и средств
для тушения по всей площади в данный момент
времени недостаточно. Периметр пожара определяется
по формуле, в зависимости от формы площади пожара:
круговая: Рп = 2 L, [м];
угловая 180o: Рп = L + 2L , [м];
угловая 90o: Рп = (L)/2 + 2L , [м];
прямоугольная с дальнейшим распространением
пожара: Рп = 2(a+nL) , [м];
прямоугольная без распространения пожара:
Рп = 2(a+b) , [м].

1.6).Определение фронта пожара.
Фронт пожара (Фп) -- часть периметра пожара, в
направлении которой происходит распространение горения.
Данный параметр имеет особое значение для оценки
обстановки на пожаре, определения решающего направления
боевых действий и расчета сил и средств на тушение любого
пожара. Фронт пожара определяется по формулам:
при круговой форме пожара:
Фп = 2 L , [м];
при угловой 180 форме пожара:
Фп = L , [м];
при угловой 90 форме пожара:
Фп = (L)/2 , [м];
при прямоугольной форме с дальнейшим распространением
пожара:
Фп = na , [м];
при прямоугольной форме без распространения пожара:
Фп = 0.

1.7).Определение скорости роста площади пожара.
Скорость роста площади пожара (Vs) определяется по
формуле:
Vs =
[м2/мин.],
где:
- время на каждый расчётный момент, [мин.].
1.8).Определение скорости роста периметра пожара.
Скорость роста периметра пожара (Vр) определяется
по формуле:
– при круговой и угловой форме площади пожара;
Vр =
, [м/мин.]
-для прямоугольной формы площади пожара;
Vр =
, [м/мин.]

1.9).Определение скорости роста фронта
пожара.
Скорость роста фронта пожара (Vф)
определяется по формуле:
Vф =
, [м/мин.].

2.Расчет сил и средств для тушения пожара.
Каждый пожар характеризуется своеобразной обстановкой, для
его тушения требуются различные огнетушащие средства и
разное количество сил и средств. От правильного их расчёта
зависит успех тушения любого пожара.
2.1).Определение площади тушения.
Площадь тушения (Sт) - это часть площади пожара, которую
на момент локализации обрабатывают поданными
огнетушащими средствами.
В зависимости от того, каким образом введены силы и средства,
тушение в данный момент времени может осуществляться с
охватом всей площади пожара или только её части. При этом
расстановка сил и средств, в зависимости от обстановки на
пожаре, конструктивных особенностей объекта, производится по
всему периметру пожара или по фронту его локализации. Если в
данный момент сосредоточенные силы и средства обеспечивают
тушение пожара по всей площади горения, то расчёт их
производится по площади пожара, т.е. площадь тушения будет
численно равна площади пожара.

Если в данный момент времени обработка всей площади
пожара огнетушащими средствами не обеспечивается, то
силы и средства сосредотачиваются по периметру или
фронту локализации или по фронту для поэтапного
тушения. В этом случае расчет их осуществляется по
площади тушения.
Площадь тушения водой во многом зависит от глубины
обработки горящего участка (глубина тушения), hт. [м].
Практикой установлено, что по условиям тушения
пожаров эффективно используется примерно третья часть
длины струи. Поэтому в расчётах глубина тушения для
ручных стволов принимается -5 метров, для лафетных –
10 метров.
Следовательно, площадь тушения будет численно
совпадать с площадью пожара при её ширине (для
прямоугольной формы),

не превышающих 10 метров при подаче ручных стволов,
введенных по периметру навстречу друг другу, и 20
метров – при тушении лафетными стволами. В остальных
случаях площадь тушения принимается равной разности
общей площади пожара и площади, которая в данный
момент водяными струями не обрабатывается. В жилых и
административных зданиях с небольшими помещениями
расчёт сил и средств целесообразно проводить по
площади пожара, т.к. их размеры не превышают глубины
тушения стволами.

Формулы для определения площади тушения даны в
таблице:
Форма
площади
пожара
Значение угла, град
Площадь тушения при расстановке сил и средств
по фронту
круговая
360º
Рис. 2 г.
угловая
90º
Рис. 2 д.
При L > h
Sт = 0,25π h (2L – h)
При L > 3h
Sт = 3,57h (L – h)
угловая
180º
Рис. 2 е.
При L > h
Sт = 0,5π h (2L – h)
При L > 2h
Sт = 3,57h (1,4L – h)
угловая
270º
Рис. 2 ж.
При L > h
Sт = 0,75π h (2L – h)
При L > 2h
Sт = 3,57h (1,8L – h)
См. рис. 2 а,б,в.
При b > n h
Sт = n a h
При a > 2h
Sт = 2h (а + b – 2h)
прямоугольная
При L > h
Sт = π h (2L – h)
по периметру
При L > h
Sт = π h (2L – h)
Примечание. При значениях «а», «b» и «L», равных и меньше значений,
указанных в таблице, площадь тушения будет соответствовать площади
пожара (Sт = Sп) и рассчитывается по формулам, приведенным в п.1.3.
данных методических указаний.

2.2).Определение требуемого расхода воды на
тушение пожара.
Расход огнетушащего вещества (Q;q) – это
количество данного вещества поданного в единицу
времени (л/с, л/мин., кг/с, кг/мин., м3/мин.).
Различают несколько видов расходов огнетушащего
средства: требуемый (Qтр.), фактический (Qф.), общий
(Qобщ.), которые приходится определять при решении
практических задач по пожаротушению.
Требуемый расход – это весовое или объёмное
количество огнетушащего средства, подаваемого в
единицу времени на величину соответствующего
параметра тушения пожара или защиты объекта,
которому угрожает опасность.
В практических расчётах требуемого количества
огнетушащего вещества для прекращения горения
пользуются величиной его подачи.

Интенсивность подачи огнетушащих средств (I) –
количество данного огнетушащего средства, подаваемого в
единицу времени на единицу расчётного параметра
тушения пожара.
Под расчётным параметром тушения пожара (Пт)
понимается:
- площадь пожара, Sп;
- площадь тушения, Sт;
- периметр пожара, Pп;
- фронт пожара, Фп;
- объём тушения, Vпом.
Интенсивности подачи огнетушащих средств различают:
- линейная, Iл [л/(см); кг/(см)];
- поверхностная, Is [л/(см2); кг/(см2)];
- объёмная, IV [л/(см3); кг/(см3)].

Они определяются опытным путём и расчётами при
анализе потушенных пожаров. Поверхностную и
объёмную интенсивности можно определить по
«Справочнику РТП» стр.56-57. Линейная
интенсивность определяется по формуле:
Iл = Is * hт
Требуемый расход огнетушащего средства на тушение
пожара определяется по формуле:
Qттр. = Пт * Iтр. ,
где
Пт – величина расчетного параметра тушения пожара;
Iтр.–требуемая интенсивность подачи огнетушащего
средства (Приложение № 6).

2.3). Определение требуемого расхода воды на защиту.
Требуемый расход воды на защиту выше и нижерасположенных
уровней объекта от того уровня, где произошел пожар,
рассчитывается по формуле:
Qзащтр. = Sзащ *Iтрзащ, [л/с].
где:
Sзащ – площадь защищаемого участка, [м2];
Iтрзащ– требуемая интенсивность подачи огнетушащих средств на
защиту. Если в нормативных документах и справочной литературе нет
данных по интенсивности подачи огнетушащих средств на защиту
объектов например, при пожарах в зданиях, её устанавливают по
тактическим условиям обстановки и осуществления боевых действий
по тушению пожара, исходя из оперативно-тактической
характеристики объекта, или принимают уменьшенной в 4 раза по
сравнению с требуемой интенсивностью подачи на тушение пожара и
определяется по формуле:
Iтрзащ = 0,25 * Iтр. , [л/(с*м2)]

2.4). Определение общего расхода воды.
Qтр. =
+
., [л/с].
2.5). Определение требуемого количества
стволов на тушение пожара.
где:
Nтств. =
,
qств.– расход ствола, [л/с].

2.6). Определение требуемого количества стволов на
защиту объекта.
=
При осуществлении защитных действий водяными струями
нередки случаи, когда требуемое количество стволов
определяют не по формуле, а по количеству мест защиты,
исходя из условий обстановки, оперативно-тактических
факторов и требований «Боевого устава пожарной
охраны» (БУПО).
Например, при пожаре на одном или нескольких этажах
здания с ограниченными условиями распространения огня
стволы для защиты подаются в смежные с горящим
помещения, в нижний и верхний от горящего этажи,
исходя из количества мест защиты и обстановки на
пожаре.

Если имеются условия для распространения огня по
пустотам, вентиляционным каналам и шахтам, то стволы
для защиты подаются исходя из обстановки на пожаре:
- в смежные с горящим помещения;
- в верхние этажи, вплоть до чердака;
- в нижние этажи, вплоть до подвала.
Количество стволов в смежных помещениях, в нижнем и
верхнем от горящего этажах, должны соответствовать
количеству мест защиты по тактическим условиям
осуществления боевых действий, а на остальных этажах и
на чердаке их должно быть не менее одного.

2.7). Определение общего количества стволов на тушение
пожара и защиту объекта.
Nств. =
+
2.8). Определение фактического расхода воды на тушение
пожара.
Фактический расход (Qф) – весовое или объёмное количество
огнетушащего средства, фактически подаваемого в единицу
времени на величину соответствующего параметра тушения
пожара или защиты объекта, [л/с]; [кг/с]; [м3/с]; [л/мин.];
[кг/мин.]; [м3/мин.].
Фактический расход находится в зависимости от количества и
тактико-технической характеристики приборов подачи
огнетушащих средств и определяется по формуле:
=
*qств. , [л/с].

2.9). Определение фактического расхода воды на
защиту объекта.
=
*qств. , [л/с].
2.10). Определение общего фактического расхода
воды на тушение пожара и защиту объекта.
Qф =
+
, [л/с].

11). Определение водоотдачи наружного противопожарного
водопровода.
При наличии противопожарного водопровода
обеспеченность объекта водой проверяется по водоотдаче
данного водопровода. Обеспеченность объекта считается
удовлетворительной, если водоотдача водопроводной сети
превышает фактический расход воды для целей
пожаротушения. При проверке обеспеченности объекта водой
бывают случаи, когда водоотдача удовлетворяет фактический
расход, но воспользоваться этим невозможно из-за отсутствия
достаточного количества пожарных гидрантов. В этом случае
необходимо считать, что объект обеспечен водой частично.

Следовательно, для полной обеспеченности объекта водой
необходимы два условия:
- чтобы водоотдача водопроводной сети превышала
фактический расход воды (QcетиQф);
- чтобы количество пожарных гидрантов соответствовало бы
количеству пожарных автомобилей, которые необходимо установить на
эти гидранты (NпгNавт.).
Водопроводные сети бывают двух видов:
- кольцевые;
- тупиковые.
Водоотдача кольцевой водопроводной сети рассчитывается по
формуле:
Qксети = (D/25)2 Vв, [л/с],
где:
D – диаметр водопроводной сети, [мм];
25 – переводное число из миллиметров в дюймы;
Vв – скорость движения воды в водопроводе, которая равна:
- при напоре водопроводной сети H<30 м вод.ст. -Vв =1,5 [м/с];
- при напоре водопроводной сети H>30 м вод.ст. -Vв =2 [м/с].
Водоотдача тупиковой водопроводной сети рассчитывается по формуле:
Qтсети = 0,5 Qксети, [л/с].

2.12). Определение времени работы пожарного автомобиля от
пожарного водоёма.
При наличии на объектах пожарных водоёмов и использовании их
для целей пожаротушения определяют время работы пожарного
автомобиля установленного на данный водоисточник по формуле:
=
, [мин.],
где:
0,9 – коэффициент заполнения пожарного водоема;
Vпв – объем пожарного водоема, [м3];
1000 – переводное число из м3 в литры.
Время работы пожарного автомобиля с установкой его на пожарный
водоём должно соответствовать условию:
раб.> р*Кз,
где:
р – расчётное время тушения пожара (Приложение №17).[мин.];
Кз – коэффициент запаса огнетушащего средства определяется по
таблице (Приложение №9).

2.13). Определение требуемого запаса воды для тушения пожара и
защиты объекта.
На объектах, где запас воды для целей пожаротушения ограничен,
проводится расчёт требуемого запаса воды для тушения и защиты
по формуле:
Wв = Qтф * 60 * р * Кз + Qзащф * 60 * з, [л],
где:
з – расчётное время запаса определяется по таблице (Приложение
№9),[ч].
В тех случаях, когда на объектах огнетушащих средств
недостаточно, принимаются меры к их увеличению: повышается
водоотдача путём увеличения напора в сети, организуется
перекачка или подвоз воды с удалённых водоисточников,
специальные средства доставляются с резервных складов
гарнизона и опорных пунктов тушения крупных пожаров.
При наличии рек, озёр и других естественных водоисточников с
неограниченным запасом воды обеспеченность объекта данным
видом огнетушащего средства в расчётах не проверяется.

2.14). Определение предельного расстояния подачи огнетушащих средств.
Lпред=
, [м]
где:
Нн – напор на насосе, который равен 90-100 м вод.ст.;
Нразв –напор у разветвления, который равен 40-50 м вод.ст.;
Zм –наибольшая высота подъёма (+) или спуска (-) местности на
предельном расстоянии, [м];
Zств - наибольшая высота подъёма (+) или спуска (-) ствола от места
установки разветвления или прилегающей местности на пожаре, [м];
S- сопротивление одного пожарного рукава, (Приложение №11);
Q- суммарный расход воды одной наиболее загруженной магистральной
рукавной линии, [л/с];
«20»- длина одного напорного рукава, [м];
«1,2»- коэффициент рельефа местности.
Полученное расчётным путём предельное расстояние по подаче
огнетушащих средств следует сравнить с расстоянием от водоисточника,
на который установлен пожарный автомобиль, до места пожара (L). При
этом должно соблюдаться условие:
Lпред > L

2.15). Определение требуемого количества пожарных автомобилей, которые
необходимо установить на водоисточники.
Использование насосов на полную тактическую возможность в практике тушения
пожаров является основным и обязательным требованием. При этом боевое
развёртывание производится в первую очередь от пожарных автомобилей,
установленных на ближайших водоисточниках. Требуемое количество пожарных
автомобилей, которые необходимо установить на водоисточники, определяется по
формуле:
Nавт.= ,
где:
0,8 – коэффициент полезного действия пожарного насоса;
Qн – производительность насоса пожарного автомобиля, [л/с].
При одинаковой схеме боевого развёртывания отделений на основных пожарных
автомобилях расчет проводится по формуле:
Nавт.=,
где:
Qотд. – расход огнетушащего средства, которое может подать одно отделение,
[л/с].
В любом из указанных случаев, если позволяют условия (в частности, насоснорукавная система), боевые расчёты прибывающих подразделений должны
использовать для работы уже установленные на водоисточники пожарные
автомобили. Это не только обеспечит использование техники на полную мощность,
но и ускорит введение сил и средств на тушение пожара.

2.16). Определение требуемой численности личного состава для
тушения пожара.
Общую численность личного состава определяют путём
суммирования числа людей, занятых на проведение различных
видов боевых действий. При этом учитывают обстановку на пожаре,
тактические условия его тушения, действия, связанные с
проведением разведки пожара, боевого развертывания, спасания
людей, эвакуации материальных ценностей, вскрытия конструкций
и т.д. С учётом сказанного формула для определения численности
личного состава будет иметь следующий вид:
Nл.с.=Nгдзс*3+ Nств.«А»*2+
«Б» 1 +
«Б»*2+ Nп.б.*1+
Nавт.*1+ Nл*1+ +Nсв.*1+... ,
где:
Nгдзс - количество звеньев ГДЗС («3» – состав звена ГДЗС 3
человека)
Nств.«А» - количество работающих на тушении и защите стволов
РС-70 («2» – два человека, работающих с каждым стволом). При
этом не учитываются те стволы РС-70, с которыми работают звенья
ГДЗС;

«Б» - количество работающих на тушении пожара стволов
РСК – 50 («1» – один человек, работающий с каждым стволом).

работают звенья ГДЗС;
«Б» - количество работающих на защите объекта стволов
РСК – 50 («2» – два человека, работающих с каждым стволом).
При этом не учитываются те стволы РСК-50, с которыми
работают звенья ГДЗС, производящие защиту объекта;
Nп.б. – количество организованных на пожаре постов
безопасности;
Nавт. – количество пожарных автомобилей, установленных на
водоисточники и подающих огнетушащие средства. Личный
состав при этом занят контролем за работой насосно-рукавных
систем из расчёта: 1 человек на 1 автомобиль;
Nл - количество выдвижных лестниц на которые задействованы
страховщики из расчета: 1 человек на 1 лестницу;
Nсв. – количество связных, равное количеству прибывших на
пожар подразделений.

Ориентировочные нормативы требуемой численности
личного состава для выполнения работ на пожаре
приведены в приложении № 13.
При определении численности необходимо учитывать не
только нормативы, но и также конкретную обстановку на
пожаре и условия при его тушении.
Надо иметь в виду, что в общее количество личного состава
не включается средний и старший начальствующий состав,
а также водители пожарных автомобилей.
Если требуемая численность людей превышает
возможности гарнизона пожарной охраны, недостающее
количество личного состава компенсируется путём
привлечения к действиям на пожаре добровольных
пожарных формирований, рабочих, служащих, воинских
подразделений, работников милиции, населения и других
сил.

2.17). Определение количества отделений.
При определении требуемого количества подразделений
исходят из следующих условий: если в боевых расчётах
гарнизона находятся преимущественно пожарные
автоцистерны, то среднюю численность личного состава
для одного отделения принимают 4 человека, а при
наличии автоцистерн и автонасосов (насосно-рукавных
автомобилей) – 5 человек. В указанные числа не входят
водители пожарных автомобилей.
Требуемое количество отделений на основных
пожарных автомобилей (АЦ, АН, АНР) определяется по

Безопасность труда и охрана жизнедеятельности

Такая обстановка может возникнуть при ЯВ изза воздействия СИ техногенных пожарах на объектах экономики и природных пожарах в лесах и на торфяниках. В процессе прогнозирования определяют площадь и периметр возможного пожара характер пожара отдельный или сплошной пожар огненный шторм или массовый пожар вероятные направления и скорость его распространения а также вероятный характер воздействия пожара на людей и объекты в различные временные отрезки с учетом изменения метеоусловий. При этом берут самый неблагоприятный вариант: ось пожара...

Прогнозирование пожарной обстановки и ее оценка. Такая обстановка может возникнуть при ЯВ из-за воздействия СИ, техногенных пожарах на объектах экономики и природных пожарах в лесах и на торфяниках.

В процессе прогнозирования определяют площадь и периметр возможного пожара, характер пожара (отдельный или сплошной пожар, огненный шторм или массовый пожар), вероятные направления и скорость его распространения, а также вероятный характер воздействия пожара на людей и объекты в различные временные отрезки, с учетом изменения метеоусловий. При этом берут самый неблагоприятный вариант: ось пожара проходит через объект экономики или населенный пункт и V В > 5 м/с (при ЯВ принимают воздушный взрыв при очень прозрачном воздухе).

Полученные размеры возможного пожара наносят на карту (или схему) местности с учетом принятого (или фактического) направления ветра. Затем проводят оценку прогнозируемой пожарной обстановки в направлении обеспечения БЖД людей и успешного функционирования объекта экономики или населенного пункта. При этом выбирают варианты локализации и тушения пожара, при которых исключались (уменьшались) потери среди людей и материальный ущерб на объекте или в населенном пункте.

Методики прогнозирования и оценки возможной пожарной обстановки различны как для техногенных, так и природных пожаров. Определенная особенность существует при прогнозировании зон пожаров, вызванных СИ ЯВ. Поэтому ниже рассмотрим их кратко, считая, что детально с ними студенты будут знакомиться по практикуму при выполнении практических занятий или курсовой работы по данной дисциплине.

3.3.4.1. Методика прогнозирования и оценки возможных зон пожаров, вызванных СИ ЯВ . Исходными данными при этом служат: мощность ЯВ, расстояние до объекта (населенного пункта), характеристика атмосферы, степень огнестойкости и категорийность по взрывопожароопасности зданий и сооружений, плотность размещения зданий на объекте или в населенном пункте т.д., а также рекомендуемый (см. выше) самый неблагоприятный вариант пожара по последствиям.

Как известно, при ЯВ от СИ образуются три типа зон пожаров (см. п.п. 1.4.6). Поэтому методика прогнозирования и оценки этих зон состоит из 3-4 этапов. На 1 этапе определяют величину СИ на объекте и для всех расстояний от эпицентра ЯВ. Затем наносят возможную обстановку на карту (или схему) местности, четко выделяя границы зон пожаров.

На 2 этапе оценивают возможную пожарную обстановку по отдельным зданиям объекта (населенного пункта) с учетом их степени огнестойкости и категории по взрывопожароопасности, а затем и в целом по объекту (населенному пункту). При этом принимают во внимание плотность размещения зданий и V В , влияющих на скорость распространения огня.

На 3 этапе разрабатывают меры по исключению или ограничению возможности возникновения и развития пожара, определяют возможные способы и средства по локализации и в последующем - тушению пожара на объекте (в населенном пункте). Для более точного определения действий пожарных подразделений на 4 этапе проводят временной прогноз пожарной обстановки с учетом изменений V В и его направления.

3.3.4.2. Методика прогнозирования и оценки возможной пожарной обстановки при техногенных пожарах . Исходными данными при этом служат: характеристика элементов объекта по взрывопожароопасности и огнестойкости, плотность размещения зданий на объекте, его расположение по отношению к населенному пункту, другим объектам экономики, лесному и торфяному массивам и т.д., а также рекомендуемый (см. выше) самый неблагоприятный вариант пожара по последствиям.

Методика прогнозирования и оценка возможностей пожарной обстановки состоит из 4 этапов. На 1 этапе определяют параметры возможного пожара на наиболее пожароопасном элементе объекта экономики, в том числе площадь и периметр пожара, возможность загорания соседних зданий и сооружений с учетом их огнестойкости и взрывопожароопасности и т.д. Затем наносят размеры пожара на генплан объекта.

На 2 этапе оценивают возможную пожарную обстановку на объекте экономики, ее влияние на соседние объекты и населенный пункт, принимая во внимание плотность размещения зданий, V В и скорость развития пожара V РП .

На 3 этане разрабатывают меры по исключению или ограничению возможности возникновения и развития пожара, определяют возможные способы и средства локализации и тушения техногенного пожара на объекте экономики.

На 4 этапе проводят временной прогноз пожарной обстановки крупного пожара с учетом изменений V В , V РП и их направлений. По такому прогнозу разрабатывают тактику тушения пожара, необходимость в привлечении дополнительных сил и средств для быстрого его тушения, меры обеспечения БЖД людей, занятых на тушении пожара, и т.д.

3.3.4.3. Методика прогнозирования и оценки возможной пожарной обстановки при природных пожарах . Исходными данными при этом служат: размеры лесного или торфяного массива, его расположение по отношению к населенному пункту, объектам экономики и другим массивам, степень огнестойкости близкорасположенных зданий, сооружений и их взрывопожароопасность и т.д., а также рекомендуемый (см. выше) самый неблагоприятный вариант пожара по последствиям.

Методика прогнозирования и оценки возможной пожарной обстановки состоит из 4 этапов. На 1 этапе определяют параметры возможного природного пожара, в том числа площадь и периметр пожара, основные направления его развития и V ПР по фронту, флангам и тылу в зависимости от V В и т.д. Затем наносят размеры пожара на карту местности или генплан торфопредприятия (лесхоза).

На 2 этапе оценивают возможную пожарную обстановку в лесном (на торфяном) массиве, ее влияние на населенные пункты, другие лесные (торфяные) массивы. При этом учитывают V В , V ПР и вид пожара (низинный или верховой - в лесу; поверхностный или подземный - на торфяниках).

На 3 этапе проводят временной прогноз по развитию лесного или торфяного пожара с учетом изменений V В и его направления.

На 4 этапе разрабатывают тактику локализации и тушения данного пожара, необходимость сил и средств для этого, меры обеспечения БЖД людей, занятых на локализации и тушении пожара и т.д.

3.3.5. Прогнозирование возможной обстановки при взрыве и ее оценка . Такая обстановка может возникнуть при ЯВ и техногенных взрывах.

В процессе прогнозирования определяют избыточное давление на фронте УВ или ΔР ф , радиусы зон разрушения, характер воздействия ΔР ф (см. выше п.п. 1.4.4) на людей и объекты экономики, возможности ликвидации последствий УВ и восстановления объекта или населенного пункта. При этом берут самый неблагоприятный вариант: наземный взрыв и образовавшаяся УВ проходит через объект (населенный пункт).

Полученные размеры зон возможного разрушения наносят на карту (или схему) местности. Затем проводят оценку прогнозируемой обстановки в направлении обеспечения БЖД людей и успешного функционирования объекта экономики или населенного пункта. При этом выбирают варианты СНАВР, при которых исключались (уменьшались) потери среди людей и материальный ущерб на объекте (в населенном пункте).

Методики прогнозирования и оценки возможных зон разрушения различны как для ЯВ, так и техногенных взрывов. Поэтому ниже рассмотрим их кратко, считая, что детально с них студенты будут знакомиться по практикуму или при выполнении практических занятии по данной дисциплине.

3.3.5.1. Методика прогнозирования и оценки зон разрушения УВ ЯВ . Исходными данными при этом служат: мощность ЯВ, расстояние от центра взрыва до объекта экономики (населенного пункта), прочностные характеристики зданий и сооружений, инженерно-технических коммуникаций и других элементов объекта.

Методика прогнозирования и оценки зон разрушения УВ ЯВ состоит из 3 этапов. На 1 этапе определяют ΔР ф в месте нахождения объекта экономики (населенного пункта) и радиусы зон разрушения. Затем наносят их на карту (или схему) местности.

На 2 этапе устанавливают, в какую из зон попал рассматриваемый объект (населенный пункт) и оценивают характер разрушения отдельных его элементов и всего объекта (пункта). Одновременно устанавливают виды поражения людей, находящихся в зданиях, сооружениях объекта и вне их.

На 3 этапе определяют меры, способы и средства ликвидации последствий и предупреждению их путем повышения устойчивости элементов объекта (населенного пункта) к воздействию УВ ЯВ.

3.3.5.2. Методика прогнозирования и оценки зон разрушения УВ техногенных взрывов . К таким взрывам относят взрывы газо-воздушных горючих смесей (объемный взрыв), взрывоопасных объектов и установок и т.д. Исходными данными при взрыве газо-воздушных смесей (чаще всего наблюдается в настоящее время) являются: количество углеводородных продуктов - метана, пропана, бутана, этилена, пропилена, бутилена, бензола и др.; расстояние от места взрыва, вид зданий, сооружений и оборудования и т.д.

Методика прогнозирования и оценки зон разрушения УВ техногенных взрывов состоит из 3 этапов. На 1 этапе определяют радиусы трех круговых зон (I - зона детонационной волны, где ΔР ф ≈1700...1500 кПа; II - зона действия продуктов взрыва, где ΔР ф ≤ 300 кПа; III - зона воздушной взрывной волны, где ΔР ф = 100...10 кПа) и наносят их на карту (или схему) местности. Кроме того, вычисляют интенсивность теплового потока и импульса на требуемых расстояниях, а также продолжительность существования огненного шара.

На 2 этапе устанавливают, в какую из зон попал рассматриваемый объект экономики и оценивают характер разрушения отдельных его элементов и всего объекта. Одновременно устанавливают виды поражения людей, находящихся в зданиях, сооружениях объекта и вне их.

На 3 этапе определяют меры, способы и средства по ликвидации последствий и предупреждению возможных техногенных взрывов, а также вычисляют материальный ущерб, причиненный этим взрывом данному и другим объектам экономики.


А также другие работы, которые могут Вас заинтересовать

52965. Les langues étrangères c’est l’avenir? 61.5 KB
Ce pays se trouve en Europe. Le français est la langue maternelle. La population de tout le pays est 3 fois moins grande que la population de notre ville Donetsk. Dans ce pays on parle encore une langue: l’allemand. C’est le Grand-duché. Son territoire est 2600 km². Vous traversez ce petit pays pour aller de France en Allemagne. C’est quel pays ?
52966. Faits divers 54 KB
En classe entière, l’enseignant introduit l’activité par le jeu d"associations en utilisant les photos sur les sujets: "L"accident de la route", "L"incendie", "Le cambriolage". Ces photos, elles vous font penser à quoi?
52967. ВЛАСТИВОСТІ НАЙПРОСТІШИХ ГЕОМЕТРИЧНИХ ФІГУР, СУМІЖНИХ ТА ВЕРТИКАЛЬНИХ КУТІВ 99.5 KB
Є про трикутники є про кути. Геометрія це наука про властивості Через будьякі дві точки можна провести Відрізком називається частина прямої яка складається з усіх точок Довжина відрізка дорівнює сумі довжин Пряма розбиває площину Якщо кінці відрізка належать одній півплощиніто Якщо кінці відрізка належать різним півплощинамто Градусна міра кута дорівнює сумі градусних мір Трикутником називається фігура яка складається з Два кути називаються суміжними якщо Два кути називаються вертикальними якщо Основна властивість суміжних кутів...
52968. Розв’язування задач і вправ на обчислення площ та об’ємів геометричних фігур 52.5 KB
Записуємо число класна робота і тему урока в зошиті II Перевірка домашнього завдання. Перевіримо зарання Як зробили ви завдання Олівці взяли у руки Й приступили до науки Щоб ви менше хвилювались Зошитами обмінялись. Тестові завдання. Завдання для 1 групи.
52969. Марш. Музыка 1 класс 50.5 KB
Тема: Марш Цели: познакомиться с жанром марш; рассмотреть жизненные обстоятельства при которых звучит марш научиться различать разные виды маршей. Организация урока: построение перед классом вход под музыку марша музыкальное приветствие. Марш пофранцузски ходьба движение. От этого слова и пошло наше маршировать то есть ходить особенным ладным и четким шагом.
52970. Класична доба української філософії 141.5 KB
Світова та українська культура. Вкажіть основні риси українського світогляду. Що притаманно для філософської думки Київської Русі Перерахуйте твори часів Київської Русі які відображали світогляд. Що повинні були написати на могильному камені Сковороди Світ ловив мене та не впіймав.
52971. Впорядкування даних, пошук даних за зразком в таблиці. Використання фільтрів для пошуку даних в базі даних 12.72 MB
Перевірка домашнього завдання. Ми продовжуємо вивчати тему «Бази даних. Система управління базами даних Access». На попередніх уроках ми вчилися проектувати БД, розглядали різні способи створення таблиць, заповнювали таблиці конкретними даними.
52973. TAXATION. WHAT ARE TAXES? 528 KB
Businesses and individuals are subject to many forms of taxes. The various forms of business organization are not taxed equally. The tax situation is simplest for proprietorships and most partnerships; corporations or companies are treated differently.


Поделиться